全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

毛白杨木粉/聚丙烯复合材料界面相容性的介电弛豫解析
Analysis of dielectric relaxation on interfacial compatibility of poplar wood flour/polypropylene composite

DOI: 10.13801/j.cnki.fhclxb.20150310.001

Keywords: 毛白杨木粉,聚丙烯,复合材料,界面,相容性,介电弛豫
polar wood flour
,polypropylene,composites,interface,compatibility,dielectric relaxation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解析木塑复合材料的界面相容性机制, 通过介电弛豫过程分析研究不同硅烷偶联剂添加量的毛白杨木粉/聚丙烯复合材料的温度谱及频率谱, 并计算介电弛豫过程中的表观活化能和热力学量.结果表明:在添加硅烷偶联剂的毛白杨木粉/聚丙烯复合材料中能观察到基于木材细胞壁无定形区中伯醇羟基的回转取向运动的弛豫过程;弛豫强度随硅烷偶联剂添加量增大先减少而后缓慢增大;随偶联剂添加量的增大, 弛豫时间分布峰呈先变宽、变低, 然后再变尖、变高趋势;表观活化能、活化焓、活化自由能和活化熵随硅烷偶联剂添加量增加先增大后减小.表观活化能在硅烷偶联剂添加量(质量比)为2.0%时达到最大值(28.12 kJ/mol), 与未添加偶联剂的毛白杨木粉/聚丙烯复合材料的(13.86 kJ/mol)相比增加2倍以上, 活化焓在硅烷偶联剂添加量从0%时的12.09 kJ/mol增大到2.0%时的26.35 kJ/mol, 增大了117.9%, 说明弛豫过程中伯醇羟基回转取向运动需要克服的能垒增加, 毛白杨木粉与聚丙烯塑料的相容性更好, 结合更紧密, 界面强度更强, 性能更加稳定. To analyze the interfacial compatibility mechanism in wood flour/polymer composites, the temperature spectra and frequency spectra of polar wood flour/polypropylene composites with different loading levels of silane coupling agent were researched through dielectric relaxation process and then the apparent activation energy and thermodynamic quantity in dielectric relaxation process were calculated. The results show that there is relaxation process in poplar wood flour/polypropylene composites with silane coupling agent which is based on reorientation of the methynol groups in amorphous region of wood cell wall. The dielectric relaxation strength decreases first then slowly increases with silane coupling agent loading. The distribution peaks of relaxation time are high and narrow at the beginning then are broader and lower, finally narrower and higher again with increasing silane coupling agent. The values of apparent activation energy, activation enthalpy, activation free energy and activation entropy tend to increase first and then decrease with increasing silane coupling agent. Apparent activation energy and activation enthalpy of 2.0% silane coupling agent modified composites show the maximal value among all the tested conditions, which is 28.12 kJ/mol and 26.35 kJ/mol,respectively, more than twice and 117.9% as likely to samples without coupling agent. It suggestes that the reorientation of the methylol groups becomes very difficult under the strong hindrance. The compatibility between poplar wood flour and polypropylene plastic is better, and the internal bonding and interface strength is stronger, property is more stable. 国家自然科学基金(30871966)

References

[1]  Yu F B, Song J B, Wu Q N, et al. Grafting modification of bamboo flour and its effect on the rheological behavior of bamboo flour/PETG composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 578-583 (in Chinese). 余方兵, 宋剑斌, 吴秋宁, 等. 竹粉接枝改性及其对竹粉/PETG复合材料流变行为的影响[J]. 复合材料学报, 2014, 31(3): 578-583.
[2]  Behzad K. Effect of wood flour content on the hardness and water uptake of thermoplastic polymer composites[J]. World Applied Sciences, 2011, 12(9): 1632-1634.
[3]  Deng Q Y, Li D G, Wang R, et al. Preparation and properties of chitin nanofibers/montmorillonite composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1160-1166 (in Chinese). 邓巧云, 李大纲, 王茹, 等. 甲壳素纳米纤维/蒙脱土复合材料 的制备与性能[J]. 复合材料学报, 2014, 31(5): 1160-1166.
[4]  Lu J, Wu Q, Negulescu I. Maleated wood fiber/high-density-polyethylene composites: Coupling agent performance[J]. Journal of Appllied Polymer Science, 2005, 96(1): 93-102.
[5]  Ji Z M, Du S G, Shi D M, et al. Research on the applications of silicane coupling agents in compound materials[J]. Modern Paint & Finishing, 2006(12): 44-46 (in Chinese). 纪占敏, 杜仕国, 施冬梅, 等. 硅烷偶联剂在复合材料中的应用研究[J]. 现代涂料与涂装, 2006(12): 44-46.
[6]  Chotirat L, Chaochanchaikul K, Sombatsompop N. On adhesion mechanisms and interfacial strength in acrylonitrile-butadiene-styrene/wood sawdust composites[J]. International Journal of Adhesion and Adhesives, 2007, 27(8): 669-678.
[7]  Bledzki A, Gassan J. Composites reinforced with cellulose based fibres[J]. Progress in Polymer Science, 1999, 24(2): 221-274.
[8]  Li Z J, Fu X, Yu H C, et al. Structure and mechanical properties of the modified rubber wood-flour/HDPE composite[J]. Plastics, 2006, 35(3): 1-5 (in Chinese). 李志君, 符新, 余浩川, 等. 改性橡胶木粉/HDPE复合材料结构和力学性能的研究[J]. 塑料, 2006, 35(3): 1-5.
[9]  Colom X, Carrasco F, Pages P. Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites[J]. Composites Science and Technology, 2003, 63(2):161-169.
[10]  Herrera-Franco P J, Valadez-Gonzalez A. A study of the mechanical properties of short natural-fiber reinforced composites[J]. Composites Part B: Engineering, 2005, 36(8): 597-608.
[11]  Cao J Z, Zhao G J. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state 1[J]. Holzforschung, 2000, 54(3): 321-326.
[12]  Cao J Z, Zhao G J. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state 2[J]. Holzforschung, 2001, 55(1): 87-92.
[13]  Cao J Z, Zhao G J. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state[J]. Holzforschung, 2002, 56(6): 655-662.
[14]  Sugimoto H, Miki T, Kanayama K, et al. Dielectric relaxation of water adsorbed on cellulose[J]. Journal of Non-Crystalline Solids, 2008, 354(27): 3220-3224.
[15]  Sugiyama M, Norimoto M. Dielectric relaxation spectra of chemically treated woods[J]. Journal of Applied Polymer Science, 2005, 96(1): 37-43.
[16]  Sugiyama M, Norimoto M. Dielectric relaxation of water adsorbed on chemically treated woods[J]. Holzforschung, 2006, 60(5): 549-557.
[17]  Fu Y L, Zhao G J. Dielectric properties of silicon dioxide/wood composite[J]. Wood Science and Technology, 2007, 41(6): 511-522.
[18]  Wang L, Cao J Z, Wang Y. Dielectric properties of Simon poplar wood flour/polypropylene composite at oven-dry state[J]. Forestry Studies in China, 2008, 10(4): 265-269.
[19]  Zhu L Z, Cao J Z, Wang Y. Evaluation of interfacial compatibility in wood flour/polypropylene composite with the dielectric approach[J]. Journal of Applied Polymer Science, 2013, 129(3): 1520-1526.
[20]  Zhu L Z, Cao J Z, Wang Y, et al. Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach[J]. Polymer Composites, 2014, 35(3): 489-494.
[21]  Standardization Administration of the People's Republic of China. GB/T 29418—2012 Test methods for mechanical and physical properties of wood-plastic composite product[S]. Beijing: Standards Press of China, 2012 (in Chinese). 中国国家标准化管理委员会. GB/T 29418—2012 塑木复合材料产品物理力学性能测试[S]. 北京:中国标准出版社, 2012.
[22]  Cole K S, Cole R H. Dispersion and absorption in dielectrics[J]. Journal of Chemical Physics, 1941, 9: 341-351.
[23]  Glasstone S, Laidler K, Eyring H. The theory of rate processes[M]. New York: McGraw Hill, 1941: 544-551.
[24]  Clemons C, Sabo R, Kaland M, et al. Effects of silane on the properties of wood-plastic composites with polyethylene-polypropylene blends as matrices[J]. Journal of Applied Polymer Science, 2011, 119(3): 1398-1409.
[25]  Song Y M, Li C T, Wang W H, et al. Coupling effects of silane on the mechanical properties and water absorption of wood flour/HDPE composites[J]. Scientia Silvae Sinicae, 2011, 47(6): 122-127 (in Chinese). 宋永明, 李春桃, 王伟宏, 等. 硅烷偶联剂对木粉/HDPE复合材料力学与吸水性能的影响[J]. 林业科学, 2011, 47(6):122-127.
[26]  Xie G, Li R, Cui D, et al. Studies on melt grafting of silanes onto polypropylene via extrusion—The effect of initiator concen tration, graft monomer concentration and reaction temperature on gel fraction and melt flow rate[J]. Journal of Natural Science of Heilongjiang University, 2002, 19(1): 99-102 (in Chinese). 谢刚, 历荣, 崔丹, 等. 硅烷交联聚丙烯的研究I——引发剂用量、接枝剂用量和反应温度对凝胶率和熔体流动速率的影响[J]. 黑龙江大学自然科学学报, 2002, 19(1): 99-102.
[27]  Fu Y L. Microstructure and physical properties of silicon dioxide/wood composite[D]. Beijing: Beijing Forestry University, 2006 (in Chinese). 符韵林. 二氧化硅/木材复合材料的微细构造与物性[D]. 北京: 北京林业大学, 2006.
[28]  Matuana L, Balatinecz J, Park C, et al. X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers[J]. Wood Science and Technology, 1999, 33(4): 259-270.
[29]  Zhou Y W, Ning L P, Wang Y G, et al. Effect of xylanase solution on material properties of betula alnoides/HDPE wood plastic composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 338-344 (in Chinese). 周亚巍, 宁莉萍, 王燕高, 等. 木聚糖酶处理对西南桦木/HDPE复合材料性能的影响[J]. 复合材料学报, 2014, 31(3): 338-344.
[30]  Colom X, Carrasco F, Pages P. Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites[J]. Composites Science and Technology, 2003, 63(2):161-169.
[31]  Liao J, Chen S Y, Liu Y W, et al. Application and progress of silane coupling agent in coatings[J]. Fine and Specialty Chemicals, 2006, 14(19): 1-19 (in Chinese). 廖俊, 陈圣云, 刘英伟, 等. 硅烷偶联剂在涂料中的应用及其进展[J]. 精细与专用化学品, 2006, 14(19): 1-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133