全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

碳化与氯盐腐蚀作用下钢筋锈蚀物的微结构特征
Microstructural characteristics of steel corrosion products under carbonation and chloride salt

DOI: 10.13801/j.cnki.fhclxb.20180413.001

Keywords: 砂浆,碳化,氯盐,锈蚀生成物,微结构特征
mortar
,carbonation,chloride salt,corrosion product,microstructural characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过XPS与XRD方法研究了碳化与氯盐腐蚀作用下砂浆内钢筋锈蚀物的组成和微结构特征,阐明了砂浆内钢筋的腐蚀机制。研究结果表明:从氯盐、碳化到氯盐与碳化复合作用,钢筋锈蚀物中Fe的峰值逐渐增强,Fe的氧化物含量增多,钢筋锈蚀越来越严重;在钢筋腐蚀过程中,钢筋表面的FeO和Fe3O4等较致密的钝化膜结构会转化为Fe3+,且Fe3+与水泥的水化产物Ca2SiO4形成Fe3+-Ca2SiO4复盐,随着钢筋腐蚀程度的加剧,Fe3+-Ca2SiO4复盐含量逐渐减少,而Fe3+转化为以Fe2O3为主的其他锈蚀物。 The microstructural characteristics of steel corrosion products in mortar under effect of carbonation and chloride salt environment were investigated by XPS and XRD. The results reveal that the peak value of iron in the corrosion products gradually increases from chloride salt and carbonization to the combination of chloride and carbonization, and the corrosion degree of reinforcement becomes more serious. In the course of corrosion, the compact structure of FeO and Fe3O4 on the surface of reinforcement will be transformed into Fe3+, and the Fe3+ would form the complex salt of Fe3+-Ca2SiO4 with the hydration products of Ca2SiO4. With the increase of corrosion degree of reinforcement, the salt content of Fe3+-Ca2SiO4 would gradually decrease, and Fe3+ would be transformed into Fe2O3 based other forms of rust. 国家自然科学基金(51478227;51778302);浙江省自然科学基金(LY17E080007;LY17E080009)

References

[1]  YARO A S, ABDUL-KHALIK K R, KHADOM A A, et al. Effect of CO2 corrosion behavior of mild steel in oilfield produced water[J]. Journal of Loss Prevention in the Process Industries, 2015, 38:24-38.
[2]  HUET B, L'HOSTIS V, MISERQUE F, et al. Electrochemical behavior of mild steel in concrete:Influence of pH and carbonate content of concrete pore solution[J]. Electrochimica Acta, 2005, 51(1):172-180.
[3]  WANG Y, NANUKUTTAN S, BAI Y, et al. Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes[J]. Construction and Building Materials, 2017, 140:173-183.
[4]  POYET S, DRIDI W, L'HOSTIS V, et al. Microstructure and diffusion coefficient of an old corrosion product layer and impact on steel rebar corrosion in carbonated concrete[J]. Corrosion Science, 2017, 125:48-58.
[5]  GHODS P, ISGOR O B, BENSEBAA F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corrosion Science, 2012, 58:159-167.
[6]  GHODS P, ISGOR O B, BROWN J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J]. Applied Surface Science, 2011, 257:4669-4677.
[7]  MIKE B O, HANS D B, MARK G. Alexander modelling corrosion propagation in reinforced concrete structures:A critical review[J]. Cement and Concrete Composites, 2010, 33(2):241-245.
[8]  MARQUESP F, CHASTRE C, ?NGEL N. Carbonation service life modelling of RC structures for concrete with Portland and blended cements[J]. Cement and Concrete Composites, 2013, 37(3):171-184.
[9]  LIU J Z, BA M F, DU Y G, et al. Effects of chloride ions on carbonation rate of hardened cement paste by X-ray CT technic[J]. Construction and Building Materials, 2016, 122(7):619-627.
[10]  WILLIAMSON J, ISGOR O B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar[J]. Corrosion Science, 2016, 106:82-95.
[11]  施锦杰, 孙伟, 耿国庆, 等. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4):452-458. SHI J J, SUN W, GENG G Q, et al. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4):452-458(in Chinese).
[12]  AI Z Y, JIANG J Y, SUN W, et al. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH[J]. Applied Surface Science, 2016, 389:1126-1136.
[13]  LIU R, JIANG L H, XU J X, et al. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions[J]. Construction and Building Materials, 2014, 56:16-20.
[14]  LI Q X, WANG Z Y, HAN W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere[J]. Corrosion Science, 2008, 50:365-371.
[15]  陈雯, 杜荣归, 胡融刚, 等. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6):735-742. CHEN W, DU R G, HU R G, et al. Correlation between composition of reinforcing steel surface film and steel corrosion behavior in simulated concrete pore solutions[J]. Acta Metallurgica Stntca, 2011, 47(6):735-742(in Chinese).
[16]  OHTSUKAT T, KOMATSU T. Enhancement of electric conductivity of the rust layer by adsorption of water[J]. Corrosion Science, 2005, 47:2571-2577.
[17]  柳俊哲, 袁伟静, 贺智敏, 等. 碳化与氯盐复合作用下水泥浆体的微结构演变[J]. 复合材料学报, 2015, 32(5):1536-1546. LIU J Z, YUAN W J, HE Z M, et al. Microstructural characteristics of hardened cement against combined effect of carbonation and chloride salt[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1536-1546(in Chinese).
[18]  TATYANA V S, VERONIKA K L, GALINA A T. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions[J]. Corrosion Science, 2014, 80:299-308.
[19]  ARTO K, MARI H, JUKKA L, et al. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades[J]. Cement and Concrete Research, 2015, 78:200-207.
[20]  GUNAY H B, GHODS P, ISGOR O B, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS[J]. Applied Surface Science, 2013, 274:195-202.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133