全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

放电等离子体烧结制备Mg85Zn6Y9颗粒增强Mg-9Al-1Zn复合材料组织与力学性能
Microstructural evolution and mechanical properties of Mg85Zn6Y9 powder reinforced Mg-9Al-1Zn composites prepared by spark plasma sintering

DOI: 10.13801/j.cnki.fhclxb.20171228.004

Keywords: 长周期堆垛结构,高能球磨,放电等离子体烧结,镁基复合材料,微观组织,力学性能
long period stacking ordered structure
,high energy ball milling,spark plasma sintering,magnesium matrix composites,microstructure,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用高能球磨法和放电等离子体烧结(SPS)技术,以包含100%长周期堆垛有序结构(LPSO)相Mg85Zn6Y9镁合金为原料,通过将其球磨成纳米晶颗粒后与Mg-9Al-1Zn(AZ91)镁合金雾化颗粒进行机械混合,并在350℃烧结温度下成功制备出不同质量分数(0~30wt%)的LPSO相Mg85Zn6Y9颗粒增强AZ91复合材料(Mg85Zn6Y9/AZ91)。采用光学显微镜(OM)、SEM及TEM对Mg85Zn6Y9/AZ91复合材料的微观组织结构进行表征;采用XRD分析其固溶处理前后的相转变;与此同时对复合材料进行显微硬度与压缩试验,综合研究其微观组织与力学性能的关系。相关结果表明,Mg85Zn6Y9颗粒经3 h高能球磨后颗粒尺寸显著减小,硬度随晶粒细化而提升。Mg85Zn6Y9增强颗粒主要分布在AZ91基体颗粒边界处,随着Mg85Zn6Y9质量分数的增加,增强相颗粒有相互结合成连续网格状趋势。增强颗粒与基体界面处未见明显过渡层,基体界面处的β相经400℃×24 h固溶处理后进入基体,部分增强颗粒亦转变为Mg相。本实验条件下制备的最佳性能的20wt% Mg85Zn6Y9/AZ91复合材料经固溶处理后的室温屈服强度从200 MPa转变为230 MPa,屈服强度均较未添加Mg85Zn6Y9的AZ91镁合金有较大的提高。 The composition of as-cast Mg85Zn6Y9 alloy with almost 100% long period stacking ordered structure (LPSO) phase was milled into nanocrystalline powder by the high energy ball milling, then was mechanical blended with atomized Mg-9Al-1Zn(AZ91) powder. The Mg85Zn6Y9/AZ91 composites with the mass fraction of Mg85Zn6Y9 powder from 0wt% to 30wt% were prepared by spark plasma sintering (SPS) at 350℃. The microstructure of Mg85Zn6Y9/AZ91 composites was characterized with optical microscope (OM), SEM and TEM; XRD was used to analyze phase transition of the composite before and after solid solution treatment; microhardness and compression test were also carried out to study the mechanical properties of the composites. The results show that the Mg85Zn6Y9 powder's grain size decreases and the microhardness of the Mg85Zn6Y9 powder increases obviously after 3 h high energy ball milling. In addition, the Mg85Zn6Y9 powder is mainly distributed at the boundaries of the AZ91 matrix powder. With more addition of Mg85Zn6Y9 powder, the Mg85Zn6Y9 powders likely combine with each other to form a continuous grid. Moreover, there is no obvious transition layer at the interface between Mg85Zn6Y9 powder and matrix. After solid solution treatment at 400℃ for 24 h, β phase is dissolved into the matrix and LPSO phase is disappeared gradually. The compressive yield strength at room temperature of the prepared 20wt% Mg85Zn6Y9/AZ91 composite with best performance changes from 200 MPa to 230 MPa, which the yield strength is significantly enhanced compared with AZ91 without Mg85Zn6Y9 powder addition. 国家自然科学基金(51701060);国家外专局高端外国专家项目(GDW20171300102);河北省教育厅基金(QN2015035);河北省自然科学基金(E2016202130);河北工业大学优秀青年科技创新基金(2015002);燕山大学亚稳材料国家重点实验室开放基金(201609)

References

[1]  CHINO Y, MABUCHI M, HAGIWARA S, et al. Novel equilibrium two phase Mg alloy with the long-period ordered structure[J]. Scripta Materialia, 2004, 51(7):711-714.
[2]  O?ORBE E, GARCéS G, PéREZ P, et al. The evolution of internal strain in Mg-Y-Zn alloys with a long period stacking ordered structure[J]. Scripta Materialia, 2011, 65(8):719-722.
[3]  MATSUSHITA M, BEDNARCIK J, SAKATA Y, et al. Synchronized collapse and formation of long-period stacking and chemical orders in Mg85Zn6Y9[J]. Physica B:Condensed Matter, 2015, 461:147-153.
[4]  OKUDA H, HORIUCHI T, YAMASAKI M, et al. In situ measurements on stability of long-period stacking-ordered structures in Mg85Y9Zn6 alloys during heating examined by multicolor synchrotron radiation small-angle scattering[J]. Scripta Materialia, 2014, 75(9):66-69.
[5]  GR?BNER J, KOZLOV A, FANG X Y, et al. Phase equilibria and transformations in ternary Mg-rich Mg-Y-Zn alloys[J]. Acta Materialia, 2012, 60(17):5948-5962.
[6]  MOHAMED F A, XUN Y W. Correlations between the minimum grain size produced by milling and material parameters[J]. Materials Science & Engineering A, 2003, 354(1-2):133-139.
[7]  WANG S R, GENG H R, WANG Y Z. Si3 N4/Mg composites with an interpenetrating network[J]. Journal of Materials Science, 2006, 41(17):5751-5757.
[8]  WANG S R, GENG H R, WANG Y Z. Fabrication and machinability of SiN-Mg-Al-Zn (AZ91) composites[J]. Materials Science & Technology, 2006, 22(2):223-226.
[9]  MONDET M, BARRAUD E, LEMONNIER S, et al. Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering[J]. Acta Materialia, 2016, 119:55-67.
[10]  QIU D, ZHANG M X, TAYLOR J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y based alloys[J]. Acta Materialia, 2009, 57(10):3052-3059.
[11]  ESMAEILY S, KERMANI M, RAZAVI M, et al. An investigation on the in situ synthesis-sintering and mechanical properties of MoSi2-xSiC composites prepared by spark plasma sintering[J]. International Journal of Refractory Metals & Hard Materials, 2015, 48:263-271.
[12]  邓坤坤, 王翠菊, 王晓军. SiCp/AZ91复合材料的显微组织、力学性能及强化机制[J]. 复合材料学报, 2014, 31(2):388-395. DENG K K, WANG C J, WANG X J. Microstructure, mechanical properties and strengthening mechanism of SiCp/AZ91 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):388-395(in Chinese).
[13]  王长义. 高应变速率下挤压态镁合金AM30的动态压缩性能及破坏机制[J]. 热加工工艺, 2013, 42(6):67-69. WANG C Y. Dynamic compressive properties and fracture mechanism of extruded AM30 alloy under high strain rate[J]. Hot Working Technology, 2013, 42(6):67-69(in Chinese).
[14]  SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Materialia, 2010, 58(14):4760-4771.
[15]  NAMI B, SHABESTARI S G, MIRESMAEILI S M, et al. Effects of calcium and rare earth elements on microstructure and creep properties of AZ91 alloy in as cast and semisolid processed conditions[J]. International Journal of Cast Metals Research, 2011, 24(1):45-52.
[16]  FECHT H J, HELLSTERN E, FU Z, et al. Nanocrystalline metals prepared by high-energy ball milling[J]. Metallurgical Transactions A, 1990, 21(9):2333-2337.
[17]  李培培, 龙文元, 傅正义, 等. 放电等离子烧结制备Ti/C叠层材料及其力学性能[J]. 复合材料学报, 2012, 29(6):90-96. LI P P, LONG W Y, FU Z Y, et al. Ti/C laminated material prepared by spark plasma sintering method and its mechanical propertiy[J], Acta Materiae Compositae Sinica, 2012, 29(6):90-96(in Chinese).
[18]  杨素媛, 郭丹, 沈娟, 等. SPS制备TiNi增强镁合金复合材料的微观结构及力学性能[J]. 复合材料学报, 2018, 35(2):371-376. YANG S Y, GUO D, SHEN J, et al. Microstructure and mechanical properties of TiNi reinforced Mg alloy composites prepared by spark plasma sintering process[J]. Acta Materiae Compositae Sinica, 2018, 35(2):371-376(in Chinese).
[19]  TALEGHANI M A J, TORRALBA J M. The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing[J]. Materials Letters, 2013, 98(5):182-185.
[20]  KUMARAN S, CHANTAIAH B, RAO T S. Effect of niobium and aluminium additions in TiAl prealloyed powders during high-energy ball milling[J]. Materials Chemistry & Physics, 2008, 108(1):97-101.
[21]  张红英. 高能球磨-放电等离子烧结制备双尺度超细晶Ti-6Al-4V合金[D]. 广州:华南理工大学, 2013. ZHANG H Y. Bimodal ultrafine-grained Ti-6Al-4V alloy prepared by high energy ball milling and spark plasma sintering[D]. Guangzhou:South China University of Technology, 2013(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133