全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

纳米石墨负载功能化石墨烯纳米带/EVA复合材料薄膜的性能及表征
Fabrication and properties of functionalized graphene nanoribbons-nanographite/EVA composite films

DOI: 10.13801/j.cnki.fhclxb.20161124.006

Keywords: 功能化石墨烯纳米带,分散纳米石墨,EGNRs75%-CNPs/EVA复合材料薄膜,阻隔性能,抗静电性能
functionalized graphene nanoribbons
,dispersive nanographite,EGNRs75%-CNPs/EVA composite film,barrier property,antistatic property

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用十二烷基硫酸钠改善纳米石墨(CNPs)在水溶液中的分散性,使其均匀负载至功能化石墨烯纳米带(EGNRs)上,制得功能化石墨烯纳米带-纳米石墨复合体(EGNRs75%-CNPs),随后利用溶液涂覆成膜工艺在涂膜机上制得EGNRs75%-CNPs/乙烯-醋酸乙烯共聚物(EVA)复合材料薄膜。采用FTIR、XRD、XPS、TEM、FE-SEM、氧气透过仪、高阻计对不同EGNRs75%-CNPs含量的EGNRs75%-CNPs/EVA复合材料薄膜进行了结构和性能表征。研究表明:EGNRs75%-CNPs以3D网络形式存在,能够抑制纳米带团聚,说明其与EVA基体相容性好。当EGNRs75%-CNPs质量分数为1%时,EGNRs75%-CNPs/EVA复合材料薄膜的氧气透过率降低了67.6%,阻隔性能提高明显;当质量分数为0.8%时,CNPs负载到EGNRs构建3D导电网络,协同发挥增强作用,EGNRs75%-CNPs/EVA复合材料薄膜导电性能提升了约8个数量级,表现出了优良的室温导电性能。 The dispersion of nanographite (CNPs) in aqueous solution was first modified by sodium dodecyl sulfate (SDS) in order to prepare uniformly distributed CNPs on the surface of functioned graphene nanoribbons (EGNRs). Afterwards, the EGNRs75%-CNPs/EVA composite films were prepared by solution coating method on a coating machine. The morphology and properties of EGNRs75%-CNPs/EVA composite films were investigated by FTIR, XRD, XPS, FE-SEM, TEM, oxygen transmission rate and high resistance meter. The results show that the conductive network of EGNRs75%-CNPs can be observed after being loaded with CNPs, which is beneficial to the dispersion of EGNRs75%-CNPs in EVA matrix. When the mass fraction of EGNRs75%-CNPs is 1%, compared with that of the pure EVA, the oxygen transmission rate of EGNRs75%-CNPs/EVA composite films is reduced by 67.6%, thus the barrier property has improved deeply. EGNRs75%-CNPs/EVA composite films' conductivity has been improved by 8 orders of magnitude as EGNRs75%-CNPs mass fraction is 0.8% because of the formation of 3D conductive network, which exhibit the excellent room temperature conductivity. 福建省科技计划(2015 H0016);福州市科技计划(2014-G-72)

References

[1]  KHAN U, O’CONNOR I, GUN’KO Y K, et al. The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties[J]. Carbon, 2010, 48(10): 2825-2830.
[2]  WOLINSKA G, ALEKSANDRA, KUBICA P, et al. Effect of the acetate group content on gas permeation through membranes based on poly(ethylene-co-vinyl acetate) and its blends[J]. Journal of Membrane Science, 2013, 443(443): 227-236.
[3]  AGROUI K, COLLINSB G. Characterisation of EVA encapsulant material by thermally stimulated current technique[J]. Solar Energy Materials & Solar Cells, 2003, 80(1): 33-45.
[4]  PAGGI M, SAPORA A. An accurate thermoviscoelastic rheological model for ethylene vinyl acetate based on fractional calculus[J]. International Journal of Photoenergy, 2015: 252740.
[5]  孟翠省, 苏一凡, 王素玉. 薄膜级EVA树脂的市场分析[J]. 合成树脂及塑料, 2008, 25(3): 73-78. MENG Cuisheng, SU Yifan, WANG Suyu. The market analysis of EVA film[J]. Synthetic Resin And Plastics, 2008, 25(3): 73-78 (in Chinese).
[6]  WANG B, WANG M, XING Z, et al. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach[J]. Journal of Applied Polymer Science, 2013, 127(127): 912-918.
[7]  CARPENTIER F, BOURBIGOT S, BRAS M L, et al. Charring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations[J]. Polymer Degradation & Stability, 2000, 69(1): 83-92.
[8]  SOHI N J S, BHADRA S, KHASTGIR D. The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models[J]. Carbon, 2011, 49(4): 1349-1361.
[9]  LI Y, JIANG X, LIU Z, et al. Strain effects in graphene and graphene nanoribbons: The underlying mechanism[J]. Nano Research, 2010, 3(8): 545-556.
[10]  NAEEMI A, MEINDL J D. Electron transport modeling for junctions of zigzag and armchair graphene nanoribbons (GNRs)[J]. IEEE Electron Device Letters, 2008, 29(5): 497-499.
[11]  XU D, SRIDHAR V, PHAM T T, et al. Dispersion, mechanical and thermal properties of nano graphite platelets reinforced flouroelastomer composites[J]. E-Polymers, 2013, 8(1): 122-127.
[12]  马文石, 周俊文, 林晓丹. 乙醇胺功能化石墨烯的制备与表征[J]. 化学学报, 2011, 69(12): 1463-1468. MA Wenshi, ZHOU Junwen, LIN Xiaodan. Preparation and characterization of functionalized graphene with ethanolamine[J]. Acta Chimica Sinica, 2011, 69(12): 1463-1468 (in Chinese).
[13]  LIU H S, JIAN L V, LEI Y, et al. Study on the properties of modified graphene oxide/unsaturated polyester composites[J]. Thermosetting Resin, 2015, 30(2): 35-41.
[14]  YANG X, DOU X, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons[J]. Journal of the American Chemical Society, 2008, 130(13): 4216-4217.
[15]  ROSALES L, PACHECO M, BARTICEVIC Z, et al. Conductance of armchair GNRs with side-attached organic molecules[J]. Microelectronics Journal, 2008, 39(11): 1233-1235.
[16]  HELENA Valentová, MARKéTA Il íková, KLAUDIA Czaniková, et al. Dynamic mechanical and dielectric properties of ethylene vinyl acetate/carbon nanotube composites[J]. Journal of Macromolecular Science Part B, 2014, 53(3): 496-512.
[17]  LI X, WANG X, ZHANG L, et al. Chemically derived ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.
[18]  WAKABAYASHI K. Electronic and magnetic properties of nanographites[J]. Carbon Based Magnetism, 2006, 59(12): 279-304.
[19]  SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51(1): 365-372.
[20]  樊志敏, 郑玉婴, 刘先斌, 等. 功能氧化石墨烯/热塑性聚氨酯复合材料薄膜的制备及阻隔性能[J]. 复合材料学报, 2015, 32(3): 705-711. FAN Zhiming, ZHENG Yuying, LIU Xianbing, et al.Preparation and barrier properties of functional graphene oxide/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 705-711 (in Chinese).
[21]  COMPTON O C, KIM S, PIERRE C, et al. Crumpled graphene nanosheets as highly effective barrier property enhancers[J]. Advanced Materials, 2010, 22(42): 4759-4763.
[22]  NOVOSELOV K S, MOROZOV S V, MOHINDDIN T M G, et al. Electronic properties of graphene[J]. Reviews of Modern Physics, 2007, 244(11): 4106-4111.
[23]  程博, 齐暑华, 何栋, 等. 纳米石墨微片/聚氯乙烯复合材料的制备与性能[J]. 复合材料学报, 2012, 29(1): 8-15. CHENG Bo, QI Shuhua, HE Dong, et al. Fabrication and properties of graphite nanosheets/poly(vinyl chloride) composites[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 8-15 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133