|
- 2017
颗粒增强钛基复合材料先进加工技术研究与进展
|
Abstract:
颗粒增强钛基复合材料是一种重要的战略性结构材料,在航空航天、空间技术和武器装备等高新技术领域具有广阔的应用前景。但这种材料变形难、强度高等特性决定了实现其高精度、高质量加工非常困难。本文综述了颗粒增强钛基复合材料传统加工与特殊加工工艺的研究现状与进展,重点阐述了该材料在传统热加工、置氢加工、超塑性加工和激光制造过程中的加工机制和加工性能,展望了该材料在未来加工技术方面的发展趋势。 Particulate reinforced titanium matrix composites are one kind of important structural materials, which have a broad application prospect in the aerospace, space technology and military equipment and other high-tech fields. But the characteristics for the material such as high deformation resistance and high strength make it hard to achieve the further processing with high accuracy and quality. In this paper, the current status and progress of traditional processing technologies and special processing technologies for particulate reinforced titanium matrix composites were reviewed, which focused on the processing mechanism and performance in the traditional hot working, hydrogen processing, superplastic processing and laser manufacturing. After that, the paper presented future perspectives in processing technology for the material. 国家自然科学基金(51501112;51371114;U1602274);凝固技术国家重点实验室开放课题(SKLSP201620)
[1] | SCHUH C, DUNAND D C. Transformation superplasticity of Ti-6Al-4V and Ti-6Al-4V/TiC composites at high stresses[J]. Materials Science Forum, 2001, 357-359: 177-182. |
[2] | WANG M M, LU W J, QIN J N, et al. The effect of reinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrix composite[J]. Scripat Materialia, 2004, 54(11): 1955-1959. |
[3] | 王敏敏, 吕维洁, 覃继宁, 等. 原位合成TiB和TiC增强钛基复合材料的超塑变形力学行为[J]. 上海交通大学学报, 2005, 39(1): 41-45. WANG Mingmin, LU Weijie, TAN Jining, et al. Mechanical property of superplastic deformation of in-situ synthesized (TiB+TiC)/Ti matrix composite[J]. Journal of Shanghai Jiao Tong University, 2005, 39(1): 41-45 (in Chinese). |
[4] | 李丽. 原位自生颗粒增强7715D基复合材料的超塑性研究[D]. 上海: 上海交通大学, 2008. LI Li. Study of superplastical behavior of in-situ particle reinforced 7715D matrix titanium composites[D]. Shanghai: Shanghai Jiao Tong University, 2008 (in Chinese). |
[5] | 陆成杰. 挤压态 TiBw/TC4复合材料超塑性变形行为与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. LU Chengjie. Research on superplastic deformation behaviors and mechanisms of as-extruded TiBw/TC4 composites[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). |
[6] | ZWICKER U, HANS W S. Process for improving the workability of titanium alloys: U.S. Patent 2892742[P]. 1959-6-30. |
[7] | SMICKLEY R J, DARDI L E. Microstructural refinement of cast metal: U.S. Patent 4624714[P]. 1986-11-25. |
[8] | SENKOV O N, FROES F H, BABURAJ E G. Development of a nanocrystalline titanium aluminide-titanium silicide particulate composite[J]. Scripta Materialia, 1997, 37(5): 575-579. |
[9] | MACHIDA N, NODA M, FUNAMI K, et al. Effect of hydrogenation treatment on grain refinement of reaction sintered Ti-6Al-4V alloy composites[J]. Materials Transactions, 2004, 45(7): 2288-2294. |
[10] | 卢俊强. 原位自生钛基复合材料的热氢处理研究[D]. 上海: 上海交通大学, 2010. LU Junqiang. A study on thermohydrogen treatment of in-situ synthesized titanium matrix composite[D]. Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese). |
[11] | 宋杰. 热氢处理对(TiB+TiC)/Ti-6Al-4V复合材料微观组织和力学性能的影响[D]. 上海: 上海交通大学, 2011. SONG Jie. Microstructure and tensile properties of (TiB+TiC)/Ti-6Al-4V composite processed by hydrogen treatment[D]. Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese). |
[12] | ILYIN A. Thermohydrogen treatment—The base of hydrogen technology of titanium alloys[J]. Titanium'95, 1995, 3: 2462-2469. |
[13] | 孙栓利. 原位自生(TiC+TiB)/Ti-1100复合材料的热氢处理研究[D]. 上海: 上海交通大学, 2011. SUN Shuanli. A study on thermohydrogen treatment of (TiC+TiB)/Ti-1100 composite synthesized using in-situ technology[D]. Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese). |
[14] | LI H, LIU H B, YU W X, et al. Fabrication of high strength bond of Ti-17 alloy using press bonding under a high bonding pressure[J]. Materials Letters, 2013, 108: 212-214. |
[15] | NANDAN R, DEEBROY T, BHADESHIA H. Recent advances in friction-stir welding-process, weldment structure and properties[J]. Progress in Materials Science, 2008, 53(6): 980-1023. |
[16] | ZHANG C, LI H, LI M Q. Formation mechanisms of high quality diffusion bonded martensitic stainless steel joints[J]. Science and Technology of Welding and Joining, 2015, 20(2): 115-122. |
[17] | BANERJEE R, GENCA, HILL D, et al. Nanoscale TiB precipitates in laser deposited Ti-matrix composites[J]. Scripta Materialia, 2005, 53(12): 1433-1437. |
[18] | MORSI K, PATEL V V. Processing and properties of titanium-titanium boride (TiBw) matrix composites—A review[J]. Journal of Materials Science, 2007, 42(6): 2037-2047. |
[19] | MA Z Y, TJONGS C, GEN L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process[J]. Scripta Materialia, 2000, 42(4): 367-373. |
[20] | NI D R, GENG L, ZHANG J, et al. Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system[J]. Scripta Materialia, 2006, 55(5): 429-432. |
[21] | LU W, ZHANG D, ZHANG X, et al. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds, 2001, 327(1): 240-247. |
[22] | 韩远飞, 邱培坤, 孙相龙, 等. 非连续颗粒增强钛基复合材料制备技术与研究进展[J]. 航空制造技术, 2016, 510(15): 62-74. HAN Yuanfei, QIU Peikun, SUN Xianglong, et al. Progress and fabrication technology on discontinuously reinforced titanium matrix composites[J]. Aeronautical Manufacturing Technology, 2016, 510(15): 62-74 (in Chinese). |
[23] | MA F C, LU W J, QIN J N, et al. Effect of forging and heat treatment on the microstructure of in situ TiC/Ti-1100 composites[J]. Journal of Alloys and Compounds, 2007, 428: 332-337 (in Chinese). |
[24] | 刘浩. 自生(TiB+TiC)混杂增强高温钛基复合材料的制备及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. LIU Hao. Study on preparation and microstructural and mechanical characteristics of in situ (TiB+TiC) hybrid reinforced high temperature titanium matrix composites[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). |
[25] | IMAYEV V, GAISIN R, GAISINA E, et al. Effect of hot forging on microstructure and tensile properties of Ti-TiB based composites produced by casting[J]. Materials Science & Engineering A, 2014, 609: 34-41. |
[26] | 胡加瑞, 肖来荣, 龙毅, 等. 锻造对TiC颗粒增强钛基复合材料组织和性能的影响[J]. 粉末冶金材料科学与工程, 2012, 17(6): 735-740. HU Jiarui, XIAO Lairong, LONG Yi, et al. Effect of forging on microstructure and mechanical properties of titanium matrix composites reinforced by TiC particulates[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(6): 735-740 (in Chinese). |
[27] | 王博. TiBw/Ti6Al4V 复合材料挤压变形与热处理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. WANG Bo. Research on hot extrusion and heat treatment of TiBw/Ti6Al4V composites[D]. Harbin: Harbin Institute of Technology, 2011. |
[28] | 焦雪艳. 3.5 vol.% TiBw/TC4 复合材料细管热挤压-旋锻复合工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. JIAO Xueyan. Study on thin tube manufacture process of 3.5 vol.% TiBw/TC4 composite by hot extrusion and rotary forging[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). |
[29] | HUANG G, GUO X, HAN Y, et al. Effect of extrusion dies angle on the microstructure and properties of (TiB + TiC)/Ti6Al4V in situ titanium matrix composite[J]. Materials Science and Engineering A, 2016, 667: 317-325. |
[30] | HU H T, HUANG L J, GENG L, et al. High temperature mechanical properties of as-extruded TiBw/Ti60 composites with ellipsoid network architecture[J]. Journal of Alloys and Compounds, 2016, 688(part A): 958-966. |
[31] | SRINIVASAN R, MIRACLE D, TAMIRISAKANDALA S. Direct rolling of as-cast Ti-6Al-4V modified with trace additions of boron[J]. Materials Science and Engineering A, 2008, 487(1): 541-551. |
[32] | SINHA V, SRINIVASAN R, TAMIRISAKANDALA S, et al. Superplastic behavior of Ti-6Al-4V-0.1B alloy[J]. Materials Science and Engineering A, 2012, 539: 7-12. |
[33] | RASTEGARI H A, ASGARI S, ABBASI S M. Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process[J]. Materials & Design, 2011, 32(10): 5010-5014. |
[34] | TABRIZI S G, SAJJADI S A, BABAKHANI A, et al. Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite[J]. Materials Science and Engineering A, 2015, 624: 271-278. |
[35] | GUO X, WANG L, WANG M, et al. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites[J]. Acta Materialia, 2012, 60(6): 2656-2667. |
[36] | 毛建伟, 吕维洁, 王立强, 等. 有, 无脉冲电流制备的钛基复合材料钨极氩弧焊接件的组织与力学性能[J]. 中国有色金属学报(英文版), 2014, 24(5): 1393-1399. MAO Jianwei, LU Weijie, WANG Liqiang, et al. Microstructure and mechanical properties of GTA weldments of titanium matrix composites prepared with or without current pulsing[J]. Transactions of Nonferrous Metals Society of China(English Edition), 2014, 24(5): 1393-1399. |
[37] | 毛建伟. 原位钛基复合材料的焊接工艺与机理研究[D].上海:上海交通大学, 2014. MAO Jianwei. Research on the welding and mechanism of in situ reinforced titanium matrix composites[D].Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese). |
[38] | 张蕾, 侯金保. SiC纤维增强钛基复合材料过渡液相扩散焊接头组织研究[J]. 航空材料学报, 2006, 26(3): 325-326. ZHANG Lei, HOU Jinbao. Joint structure of SiC fiber reinforced titanium matrix compound by transient liquid phase (TLP) diffusion bonding[J]. Journal of Aeronautical Mate-rials, 2006, 26(3): 325-326 (in Chinese). |
[39] | DA SILVA A A M, MEYER A, DOS SANTOS J F, et al. Mechanical and metallurgical properties of friction-welded TiC particulate reinforced Ti-6Al-4V[J]. Composites Science and Technology, 2004, 64(10): 1495-1501. |
[40] | 董芸松. TiBw/TC4复合材料的钎焊工艺与组织性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. DONG Yunsong. Microstructure and mechanical properties and brazing process of TiBw/TC4 composite joint[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). |
[41] | 李邦盛, 尚俊玲, 郭景杰, 等. 原位TiB晶须增强钛基复合材料的磨损机制[J]. 摩擦学学报, 2005, 25(1):18-22. LI Bangsheng, SHANG Junling, GUO Jingjie, et al. Wear mechanism of in-situ Ti-based composites reinforced with TiB whisker[J].Tribology, 2005, 25(1): 18-22 (in Chinese). |
[42] | 李邦盛, 尚俊玲, 郭景杰, 等. 原位TiB/Ti复合材料的熔铸制备及其显微组织[J]. 材料研究学报, 2005, 4(19): 375-380. LI Bangsheng, SHANG Junling, GUO Jingjie, et al. Microstructure of investment casting in situ TiB/Ti composites[J]. Chinese Journal of Materials Research, 2005, 4(19): 375-380 (in Chinese). |
[43] | MANI B, PAYDAR M H. Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites[J]. Journal of Alloys and Compounds, 2010, 492(1-2): 116-121. |
[44] | 韩远飞, 段宏强, 吕维洁, 等.非连续增强金属基复合材料剧烈塑性变形行为研究进展[J]. 复合材料学报, 2015, 32(1): 1-12. HAN Y F, DUAN H Q, LU W J, et al. Research process on severe plastic deformation behaviors of discontinuously reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 1-12 (in Chinese). |
[45] | WANG L, WANG X, ZHANG L C, et al. Ultrafine processing of (TiB+ TiC)/TC18 composites processed by ECAP via Bc route[J]. Materials Science and Engineering A, 2015, 645: 99-108. |
[46] | KARIMI M, TOROGHINEJAD M R. An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process[J]. Materials & Design, 2014, 59: 494-501. |
[47] | HUANG L J, GENG L, PENG H X. In situ (TiBw+ TiCp)/Ti6Al4V composites with a network reinforcement distribution[J]. Materials Science and Engineering A, 2010, 527(24-25): 6723-6727. |
[48] | GENG L, NI D R, ZHANG J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites[J]. Journal of Alloys and Compounds, 2008, 463(1-2): 488-492. |
[49] | YU Y, ZHANG W, DONG W, et al. Research on heat treatment of TiBw/Ti6Al4V composites tubes[J]. Materials & Design, 2015, 73: 1-9. |
[50] | ZHANG W, JIAO X, YU Y, et al. Microstructure and properties of 3.5 vol.% TiBw/Ti6Al4V composite tubes fabricated by hot-hydrostatic extrusion[J]. Journal of Materials Science & Technology, 2014, 30(7): 710-714. |
[51] | 黄陆军. 增强体准连续网状分布钛基复合材料研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. HUANG Lujun. Research on the titanium matrix composites with a quasi-continuous network reinforcement distribution[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese). |
[52] | 郭相龙. 变形量对(TiB+La2O3)/Ti复合材料组织结构及力学性能影响的研究[D]. 上海:上海交通大学, 2013. GUO Xianglong. Effects of deformation degree on microstructure and mechanical properties of (TiB+La2O3)/Ti composites[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese). |
[53] | MACHIDA N, FUNAMI K, KOBAYASHI M. Grain refinement and superplasticity of reaction sintered TiC dispersed Ti alloy composites using hydrogenation treatment[J]. Materials Science Forum, 2001, 357: 539-544. |
[54] | 曾立英, 赵永庆, 李丹柯, 等. 超塑性钛合金的研究进展[J]. 金属热处理, 2005, 30(5): 28-33. ZENG Liying, ZHAO Yongqing, LI Danke, et al. Research progress on superplastic titanium alloys[J]. Heat Treatment of Metals, 2005, 30(5): 28-33 (in Chinese). |
[55] | 蒋少松. TC4钛合金超塑性成形精度控制[D]. 哈尔滨: 哈尔滨工业大学, 2009. JIANG Shaosong. Accuracy control of superplastic forming for TC4 titanium alloy[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). |
[56] | DUNAND D C, BEDELL C M. Transformation-mismatch superplasticity in reinforced and unreinforced titanium[J]. Acta Materialia, 1996, 44(3): 1063-1076. |
[57] | SCHUH C, DUNAND D C. Whisker alignment of Ti-6Al-4V/TiB composites during deformation by transformation superplasticity[J]. 2001, 17(3): 317-340. |
[58] | 刘宝玺. 层状 Ti-TiBw/Ti复合材料的制备和力学行为研究[D]. 哈尔滨:哈尔滨工业大学, 2015. LIU Baoxi. Research on fabrication and mechanical behavior of laminated Ti-TiBw/Ti composites[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese). |
[59] | 于卫新, 李淼泉, 胡一曲. 材料超塑性和超塑成形/扩散连接技术及应用[J]. 材料导报, 2009, 23(6A): 8-14. YU Weixin, LI Miaoquan, HU Yiqu. Superplasticity and application of superplastic forming/diffusion bonding technology[J]. Materials Review, 2009, 23(6A): 8-14 (in Chinese). |
[60] | BANERJEE R, COLLINS P C, FRASER H L. Laser deposition of in situ Ti-TiB composites[J]. Advanced Engineering Materials, 2002, 4(11): 847-851. |
[61] | KOOI B J, PEI Y T, DE HOSSON J T M. The evolution of microstructure in a laser clad TiB-Ti composite coating[J]. Acta Materialia, 2003, 51(3): 831-845. |
[62] | POUZET S, PEYRE P, GORNY C, et al. Additive layer manufacturing of titanium matrix composites using the direct metal deposition laser process[J]. Materials Science and Engineering A, 2016, 677: 171-181. |
[63] | GU D, WANG Z, SHEN Y, et al. In-situ TiC particle reinforced Ti-Al matrix composites: Powder preparation by mechanical alloying and selective laser melting behavior[J]. Applied Surface Science, 2009, 255(22): 9230-9240. |
[64] | 黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34(4): 126-138. HUANG Lujun, GENG Lin. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials, 2014, 34(4): 126-138 (in Chinese). |
[65] | 吕维洁. 原位自生钛基复合材料研究综述[J]. 中国材料进展, 2010, 9(4): 41-48. LU Weijie. An overview on the research of in-situ titanium matrix composites[J]. Materials China, 2010, 9(4): 41-48 (in Chinese). |
[66] | TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering R: Reports, 2000, 29(3): 49-113. |
[67] | 赵永庆. 国内外钛合金研究的发展现状及趋势[J]. 中国材料进展, 2010, 29(5): 1-8. ZHAO Yongqing. Current situation and development trend of titanium alloys[J]. Materials China, 2010, 29(5): 1-8 (in Chinese). |
[68] | 马凤仓, 吕维洁, 覃继宁, 等. 锻造对(TiB+TiC) 增强钛基复合材料组织和高温性能的影响[J].稀有金属, 2006, 30(2): 236-240. MA Fengcang, LU Weijie, TAN Jining, et al. Effect of forging on microstructure and mechanical properties of (TiB+TiC)/Ti composite[J]. Chinese Journal of Rare Metals, 2006, 30(2): 236-240. |
[69] | 黄菲菲. 原位TiB增强高温钛合金基复合材料的组织与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. HUANG Feifei, Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites[D]. Harbin: Harbin Institute of Technology, 2014. |
[70] | MAO J W, WANG M M, WANG L Q, et al. Weld zone characteristic and mechanical performance of in situ titanium matrix composites using gas tungsten arc welding (GTAW)[J]. Science and Technology of Welding and Joining, 2012, 17(8): 630-635. |
[71] | LIU B X, HUANG L J, GENG L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing[J]. Materials Science and Engineering A, 2013, 583: 182-187. |
[72] | 吕志刚. 我国熔模精密铸造的历史回顾与发展展望[J]. 铸造, 2012, 61(4): 347-356. LU Zhigang. History and development trend of investment casting industry in China[J]. Foundry, 2012, 61(4): 347-356 (in Chinese). |
[73] | 尚俊玲, 李邦盛, 任明星, 等. 原位TiB/Ti复合材料的磨损性能及磨损机制[J]. 铸造, 2008, 57(5): 465-469. SHANG Junling, LI Bangsheng, REN Mingxing, et al. Wear resistance and its mechanism of in-situ TiB/Ti composites[J]. Foundry, 2008, 57(5): 465-469 (in Chinese). |
[74] | 尚俊玲, 李邦盛, 任明星, 等. 原位TiB/Ti复合材料熔体停止流动机理研究[J]. 铸造, 2007, 56(11): 1175-1177. SHANG Junling, LI Bangsheng, REN Mingxing, et al. Study on the cessation flow mechanism of in-situ TiB/Ti composite[J]. Foundry, 2007, 56(11): 1175-1177 (in Chinese). |
[75] | WANG J, GUO X, WANG L, et al. The Influence of B4C on the Fluidity of Ti-6Al-4V-xB4C Composites[J]. Materials Transactions, 2014, 55(9): 1367-1371. |
[76] | 王冀恒. 原位自生钛基复合材料的铸造及组织和性能研究[D].上海:上海交通大学, 2015. WANG Jiheng. Research on microstructure, mechanical properties and casting technology of in-situ titanium matrix composites[D]. Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese). |
[77] | ESTRIN Y, VINOGRADOV A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J]. Acta Materialia, 2013, 61(3): 782-817. |
[78] | HAN Y, LI J, HUANG G, et al. Effect of ECAP numbers on microstructure and properties of titanium matrix composite[J]. Materials & Design, 2015, 75: 113-119. |
[79] | SCHUH C, DUNAND D C. Load transfer during transformation superplasticity of Ti-6Al-4V/TiB whisker-reinforced composites[J]. Scripta Materialia, 2001, 45(6): 631-638. |
[80] | LU J Q, QIN J N, LU W J, et al. Effect of hydrogen on microstructure and high temperature deformation of (TiB+TiC)/Ti-6Al-4V composite[J]. Materials Science and Engineering A, 2009, 500(1-2): 1-7. |
[81] | 李宏, 李淼泉. 塑性变形连接的微观组织性能与缺陷表征及机制研究进展[J]. 精密成形工程, 2015, 7(06): 8-16, 24. LI Hong, LI Miaoquan. Research progress in the microstructure, property and defect characterization and mechanisms of bond by plastic deformation[J]. Journal of Netshape Forming Energineer, 2015, 7(06): 8-16, 24 (in Chinese). |
[82] | YANG W. An Investigation of bonding mechanism in metal cladding by warm rolling[D]. US: Texas A&M University, 2011. |
[83] | ESLAMI P, TAHERI A K. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process[J]. Materials Letters, 2011, 65(12): 1862-1864. |
[84] | 李德溥, 姚英学, 袁哲俊. 颗粒增强金属基复合材料的特种加工研究现状[J]. 机械制造, 2006, 44(10): 65-68. LI Depu, YAO Xueying, YUAN Zhejun. Research progress of special processing technology on particulate reinforced metal matrix composites[J]. Machinery, 2006, 44(10): 65-68 (in Chinese). |