|
- 2016
不锈钢纤维-石墨/ABS-PVDF复合材料相转变与导电特性
|
Abstract:
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)和聚偏氟乙烯(PVDF)为基体,不锈钢纤维(SSF)和石墨为导电填料,通过熔融法制备SSF-石墨/ABS-PVDF导电复合材料,探究了其导电性能及流变性能。讨论了SSF/ABS-PVDF复合体系中导电填料的分布、导电性能及基体的相转变行为。结果表明:SSF倾向于分布在PVDF相中,当SSF含量为20wt%时,SSF/ABS-PVDF复合材料的电阻率随PVDF比例增加,先降低经历一个平台期后继续降低。PVDF在ABS-PVDF复合基体中含量为30wt%~40wt%和70wt%~80wt%时,SSF/ABS-PVDF复合材料出现相态转变行为。当SSF含量为16.84wt%和25wt%~30wt%时SSF-石墨/ABS-PVDF复合材料出现二次逾渗的现象,且与其动态模量及复数黏度的变化相符合。 The electrical properties and rheology for polymer based conductive composites were investigated, in which acrylonitrile-butadiene-styrene copolymer (ABS) and polyvinylidene fluoride (PVDF) were used as the matrix and stainless steel fibers (SSF) and graphite were used as conductive fillers, and the SSF-graphite/ABS-PVDF conductive composites were prepared by melt-blending method. The distribution of conductive filler, the conductive property and phase transition behavior of SSF/ABS-PVDF composite system were studied. The results show that SSF tends to locate in the PVDF phase, and when the SSF content is 20wt%, the electrical resistivity of SSF/ABS-PVDF composites decreases firstly, and after then reaches a platform region, finally decreases again with the increase of PVDF ratio. Phase transition behavior occurs when content of PVDF is 30wt%-40wt% and 70wt%-80wt% in ABS-PVDF composite matrix. A double percolation phenomenon appeares in the SSF-graphite/ABS-PVDF composites when content of SSF is 16.84wt% and 25wt%-30wt% which is consistent with the tendency of dynamic modulus and complex viscosity. 国家自然科学基金(51503061);湖北省科技厅支撑计划(2015BAA094);湖北省自然科学基金(2015CFB322)
[1] | CHEN Y, CHEN Q, LV Y, et al. Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods[J]. Journal of Polymer Research, 2015, 22(6):1-11. |
[2] | DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science, 2014, 39(4):627-655. |
[3] | FELLER J F, ROTH S, BOURMAUD A. Conductive polymer composites:Electrical, thermal, and rheological study of injected isotactic poly(propylene)/long stainless-steel fibers for electromagnetic interferences shielding[J]. Journal of Applied Polymer Science, 2006, 100(4):3280-3287. |
[4] | LUO W, CHENG C, ZHOU S, et al. Thermal, electrical and rheological behavior of high-density polyethylene/graphite composites[J]. Iranian Polymer Journal, 2015, 24(7):573-581. |
[5] | THOMASSIN J M, JEROME C, PARDOEN T, et al. Poly mer/carbon based composites as electromagnetic interference (EMI) shielding materials[J]. Materials Science and Engineering:R:Reports, 2013, 74(7):211-232. |
[6] | NEHA B, MANJULA K S, SRINIVASULU B, et al. Synthesis and characterization of exfoliated graphite/ABS composites[J]. Open Journal of Organic Polymer Materials, 2012, 2(4):23990-23994. |
[7] | CARPONCIN D, DANTRAS E, DANDURAND J, et al. Disconti nuity of physical properties of carbon nanotube/polymer composites at the percolation threshold[J]. Journal of Non-Crystalline Solids, 2014, 392:19-25. |
[8] | GOLDEL A, MARMUR A, KASALIWAL G R, et al. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing[J]. Macromolecules, 2011, 44(15):6094-6102. |
[9] | GUBBELS F, BLACHER S, VANLATHEM E, et al. Design of electrical composites:Determining the role of the morphology on the electrical properties of carbon black filled polymer blends[J]. Macromolecules, 1995, 28(5):1559-1566. |
[10] | WU D, LV Q, FENG S, et al. Polylactide composite foams containing carbon nanotubes and carbon black:Synergistic effect of filler on electrical conductivity[J]. Carbon, 2015, 95:380-387. |
[11] | GAO X, ZHANG S, MAI F, et al. Preparation of high performance conductive polymer fibres from double percolated structure[J]. Journal of Materials Chemistry, 2011, 21(17):6401-6408. |
[12] | CAO Y X, DU M, ZHENG Q. Progress of studies on characteristic viscoelasticity for particle-filled polymers[J]. Polymer Materials Science and Engineering, 2003, 19(3):17-20. |
[13] | 钱晨, 杨斌, 章于川, 等. 聚丙烯/乙丙橡胶共混体系相分离的流变学表征方法[J]. 高分子材料科学与工程, 2014, 30(7):96-99. QIAN C, YANG B, ZHANG Y C, et al. Rheological characterization of phase separation in polypropylene/ethylene-propylene-diene terpolymer blends[J]. Polymer Materials Science & Engineering, 2014, 30(7):96-99(in Chinese). |
[14] | 杨敏, 刘清亭, 张荣, 等. ABS/不锈钢纤维/石墨导电复合材料的导电特性[J]. 功能材料, 2015, 46(12):12127-12130. YANG M, LIU Q T, ZHANG R, et al. Study in conductive characters of ABS/stainless steel fiber/graphite conductive composites[J]. Journal of Functional Materials, 2015, 46(12):12127-12130(in Chinese). |
[15] | SUMITA M, SAKATA K, ASAI S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin, 1991, 25(2):265-271. |
[16] | 程干炬, 谢祖林, 许学锋. 固体和溶液表面张力及其分量的测定[J]. 表面技术, 1991(6):35-38. CHENG G J, XIE Z L, XU X F. Determination of solid and solution surfae tension and its componets[J]. Surface Technology, 1991(6):35-38(in Chinese). |
[17] | ROSTAMI A, MASOOMI M, FAYAZI M J, et al. Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend[J]. RSC Advances, 2015, 5(41):32880-32890. |
[18] | XU D, WANG Z, DOUGLAS J F. Crystallization-induced fluid flow in polymer melts undergoing solidification[J]. Macromolecules, 2007, 40(6):1799-1802. |
[19] | 刘正英, 郑少笛, 黄世琳, 等. iPP/HDPE/CB三元导电复合材料的导电与流变行为[J]. 高分子学报, 2012(12):1371-1375. LIU Z Y, ZHENG S D, HUANG S L, et al. Conductive and rheological behaviors of iPP/HDPE/CB ternary composites[J]. Acta Polymerica Sinica, 2012(12):1371-1375(in Chinese). |
[20] | ZHANG H B, ZHENG W G, YAN Q, et al. The effect of surface chemistry of graphene on rheological and electrical properties of polymethlmethacrylate composites[J]. Carbon, 2012, 50(14):5117-5125. |
[21] | LIEBSCHER M, BLAIS M O, POTSCHKE P, et al. A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends of PC and SAN[J]. Polymer, 2013, 54(21):5875-5882. |
[22] | ZHA J W, LI W K, LIAO R J, et al. High performance hybrid carbon fillers/binary-polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance[J]. Journal of Materials Chemistry A, 2013, 1(3):843-851. |
[23] | SUN Y, GUO Z X, YU J. Effect of ABS rubber content on the localization of MWCNTs in PC/ABS blends and electrical resistivity of the composites[J]. Macromolecular Materials and Engineering, 2010, 295(3):263-268. |
[24] | WANG B, LIANG G, JIAO Y, et al. Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss[J]. Carbon, 2013, 54:224-233. |
[25] | NAN C W, SHEN Y, MA J. Physical properties of composites near percolation[J]. Annual Review of Materials Research, 2010, 40(1):131-151. |
[26] | DU F, SCOGNA R C, ZHOU W, et al. Nanotube networks in polymer nanocomposites:Rheological and electrical conductivity[J]. Macromolecules, 2004, 37(24):9048-9055. |