|
- 2017
负载BMP-2和BSA的丝素蛋白/聚左旋乳酸-己内酯三维纤维屏障膜的制备及性能
|
Abstract:
利用骨形态发生蛋白-2(BMP-2)的骨诱导作用和牛血清白蛋白(BSA)的稳定作用,结合同轴静电纺丝技术和共混静电纺丝技术,制备了三组纤维膜,包括同时携载BMP-2和BSA的丝素蛋白(SF)/聚左旋乳酸-己内酯(PLCL)同轴载药纤维膜(BMP-2-BSA@SF/PLCL,Mat A);同时携载BMP-2和BSA的SF/PLCL共混载药纤维膜(BMP-2-BSA-SF/PLCL,Mat B)和非载药SF/PLCL纤维膜(SF/PLCL,Mat C)。通过研究纤维膜的表观形态,得出三种纤维膜均呈均匀网状结构,其中Mat A组具有稳定的核层结构;理化性能研究证实三组纤维的接触角和力学性能依次增大;体外细胞实验和膜屏障实验表明,三组纤维膜均具有良好的生物相容性和屏障功能,且具有药物缓释作用的Mat A组纤维膜能够更加有效地刺激细胞生长和早期骨向分化。所制备的BMP-2-BSA@SF/PLCL能够满足引导性骨组织再生(GBR)生物膜的基本要求,是促进骨缺损修复的理想载体。 Due to theosteoinduction of the bone morphogenetic protein-2 (BMP-2) and stabilization of bovine serum albumin (BSA), three types of new biological mat was fabricated, namely silk fibroin (SF)/poly (L-lactide-co-caprolactone)(PLCL) mat loaded with BMP-2 and BSA by coaxial electrospinning (BMP-2-BSA@SF/PLCL, Mat A), SF/PLCL mat loaded with BMP-2 and BSA by blend electrospinning (BMP-2-BSA-SF/PLCL, Mat B), non-loaded SF/PLCL mat (SF/PLCL, Mat C). The results of apparent characteristics show all the fibrous mats present homogeneous network structure, and the core-shell structure is formed only in Mat A. The physicochemical properties results show contact angle and mechanical properties of Mat A, Mat B and Mat C increase in turn. Although each group has good biocompatibility and barrier function, Mat A which has the ability of sustained drugrelease can stimulate growth and osteogenic differentiation of cells more effectively. The BMP-2-BSA@SF/PLCL fibrous mat can meet the requirements of guided bone regeneration (GBR) and will be used as the ideal carrier for bone defect repair. 教育部"中央高校基本科研业务费专项资金"重点项目(lzujbky-2016-k17);兰州市人才创新创业项目(2014-RC-79)
[1] | XUE J, MIN H, NIU Y, et al. Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane[J]. International Journal of Pharmaceutics, 2014, 475(1-2):566-577. |
[2] | KO Y G, LEE M, PARK W H, et al. Guiding bone regeneration using hydrophobized silk fibroin nanofiber membranes[J]. Macromolecular Research, 2016, 24(9):1-5. |
[3] | NORMAN J J, DESAI T A. Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane-collagen composite tissue scaffold[J]. Tissue Engineering, 2005, 11(3-4):378-386. |
[4] | LIU J, KEMS D G. Mechanisms of guided bone regeneration:A review[J]. Open Dentistry Journal, 2014, 8(1):56-65. |
[5] | 杨文静, 付静, 何磊, 等. 静电纺丝制备壳聚糖/聚己内酯血管支架及表征[J]. 复合材料学报, 2011, 28(1):104-108. YANG W J, FU J, HE L, et al. Preparation and characterization of chitosan/polycaprolactone vascular scaffolds by electrospinning[J]. Acta Materiae Compositae Sinica, 2011, 28(1):104-108(in Chinese). |
[6] | MEHRASA M, ASADOLLAHI M A, GHAEDI K, et al. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering[J]. International Journal of Biological Macromolecules, 2015, 79:687-695. |
[7] | BLOKHUIS T J, CALORI G M, SCHMIDMAIER G. Autograft versus BMPs for the treatment of non-unions:What is the evidence?[J]. Injury-international Journal of the Care of the Injured, 2013, 44(Suppl 1):S40-S42. |
[8] | LUU H H, SONG W X, LUO X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells[J]. Journal of Orthopaedic Research Official Publication of the Orthopaedic Research Society, 2007, 25(5):665-677. |
[9] | KANG Q, SUN M H, CHENG H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery[J]. Gene Therapy, 2004, 11(17):1312-1320. |
[10] | YAMAMTO M, HOKUGO A, TAKAHASHI Y, et al. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects[J]. Biomaterials, 2015, 56:18-25. |
[11] | VUKICEVIC S, OPPERMANN H, VERBANAC D, et al. The clinical use of bone morphogenetic proteins revisited:A novel biocompatible carrier device OSTEOGROW for bone healing[J]. International Orthopaedics, 2014, 38(3):635-647. |
[12] | CHEN G, DENG C, LI Y P. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. International Journal of Biological Sciences, 2012, 8(2):272-288. |
[13] | ANSELME K. Osteoblast adhesion on biomaterials[J]. Biomaterials, 2000, 21(7):667-681. |
[14] | SU Y, SU Q, LIU W, et al. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering[J]. Acta Biomaterialia, 2012, 8(2):763-771. |
[15] | ZHANG K H, WANG C Y, FENG C Y, et al. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration[J]. Journal of Biomedical Materials Research Part A, 2014, 102(8):2680-2691. |
[16] | 殷丽华, 王红, 张忠芮, 等. SF/COL/PLCL静电纺丝三维纳米纤维支架材料的性能研究[J]. 功能材料, 2014, 45(8):8102-8107. YIN L H, WANG H, ZHANG Z R, et al. A research on the performance of SF/COL/PLCL electrospun three-dimensional nanofiber scaffold[J]. Journal of Functional Materials, 2014, 45(8):8102-8107(in Chinese). |
[17] | YU K, ZHOU X, ZHU T, et al. Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering[J]. Rsc Advances, 2016, 6(77):73636-73644. |
[18] | JARDINI M A, TERA T M, MEYER A A, et al. Guided bone regeneration with or without a collagen membrane in rats with induced diabetes mellitus:Histomorphometric and immunolocalization analysis of angiogenesis and bone turnover markers[J]. International Journal of Oral & Maxillofacial Implants, 2016, 31(4):918-927. |
[19] | KHARAZIHA M, FATHI M H, EDRIS H. Development of novel aligned nanofibrous composite membranes for guided bone regeneration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 24(25):9-20. |
[20] | RETZEPI M, DONOS N. Guided bone regeneration:Biolo-gical principle and therapeutic applications[J]. Clinical Oral Implants Research, 2010, 21(6):567-576. |
[21] | GRUBER R, STADLINGER B, TERHEYDEN H. Cell-to-cell communication in guided bone regeneration:Molecular and cellular mechanisms[J]. Clinical Oral Implants Research, 2016, 28(9):1139-1146. |
[22] | JIN G, PRABHAKARAN M P, KAI D, et al. Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(3):689-698. |
[23] | CHOU S F, CARSON D, WOODROW K A. Current strategies for sustaining drug release from electrospun nanofibers[J]. Journal of Controlled Release, 2015, 220:584-591. |
[24] | POTHARAJU S P, PRATHYPATY S K, CHINTALA R K, et al. Role of bone morphogenetic proteins in periodontal regeneration-A review[J]. 2016, 4(2):141-144. |
[25] | ASAHINA I. Bone morphogenetic proteins:Their history and characteristics[J]. Journal of Hard Tissue Biology, 2014, 23(3):283-286. |
[26] | KIM S, KANG Y, KRUEGER C A, et al. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation[J]. Acta Biomaterialia, 2012, 8(5):1768-1777. |
[27] | SHEN X, ZHANG Y, GU Y, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration[J]. Biomaterials, 2016, 106:205-216. |
[28] | KIM M, HONG B, LEE J, et al. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects[J]. Biomacromolecules, 2012, 13(8):2287-2298. |
[29] | 王群旺, 熊杰, 张红萍, 等. PBS-SF核-壳结构复合超细纤维膜的制备及性能[J]. 复合材料学报, 2011, 28(2):88-93. WANG Q W, XIONG J, ZHANG H P, et al. Preparation and properties of PBS-SF core-shell composite ultrafine fibrous membranes by coaxial electrospinning[J]. Acta Materiae Compositae Sinica, 2011, 28(2):88-93(in Chinese). |
[30] | MADDEN P W, LAI J N, GEORGE K A, et al. Human corneal endothelial cell growth on a silk fibroin membrane[J]. Biomaterials, 2011, 32(17):4076-4084. |
[31] | YOO C K, JEON J Y, KIM Y J, et al. Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration[J]. Maxillofacial Plastic and Reconstructive Surgery, 2016, 38(1):1-6. |
[32] | KIM J Y, YANG B E, AHN J H, et al. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarialdefects[J]. Journal of Advanced Prosthodontics, 2014, 6(6):539-546. |
[33] | MO X M, XU C Y, KOTAKI M, et al. ElectrospunP(LLA-CL) nanofiber:A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials, 2004, 25(10):1883-1890. |
[34] | WANG Z, LIN M, XIE Q, et al. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration[J]. International Journal of Nanomedicine, 2016, 11:1483-1500. |