全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Zr-W多功能含能结构材料的制备及动态压缩特性
Preparation and dynamic compression properties of Zr-W multifunctional energetic structural material

DOI: 10.13801/j.cnki.fhclxb.20160315.001

Keywords: Zr-W,含能材料,动态压缩,恒应变率,冲击反应
Zr-W
,energetic material,dynamic compression,constant strain rate,shock-induced reaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用材料试验机和分离式霍普金森压杆(SHPB)系统对加压烧结制备的Zr-W多功能含能结构材料在不同应变率下的压缩行为进行测试。通过在试样上直接贴应变片与波形整形技术相结合,实现了恒应变率动态加载。试验结果表明:该材料在准静态和动态加载下均呈现良好的线弹性,弹性模量对应变率效应不敏感,约为186 GPa。烧结生成的W2Zr相显著提高了Zr-W材料的强度和脆性,试样在强冲击载荷作用下发生破碎反应并释放大量的热量,表现出很高的含能特性,动态破坏应变和破坏强度表现出一定的正应变率效应。 The compressive behavior of pressing sintering Zr-W multifunctional energetic structural material was tested at different strain rates by using material testing machine and split Hopkinson pressure bar (SHPB) system. A constant strain rate dynamic loading can be obtained by combination of attaching a strain gauge directly to the sample and employing the pulse shaping technique. Test results show that Zr-W material appears good linear elasticity both under quasi-static and dynamic loading, and its elastic modulus is about 186 GPa, not so sensitive to stain rate effect. The Zr-W material presents high-strength and brittle which is attributed to the W2Zr sintering product phase, and it can fragment, react and rapidly release high amounts of energy under strong impacting load. The results show that the Zr-W material has high energy, and its dynamic failure strain and failure strength increase with the strain rate increasing. 国家自然科学基金(11572049)

References

[1]  THADHANI N N. Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures[J]. Journal of Applied Physics, 1994, 76(4): 2129-2138.
[2]  National Research Council, Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced energetic materials[M]. Washington: The National Academies Press, 2004: 20-23.
[3]  张先锋, 赵晓宁. 多功能含能结构材料研究进展[J]. 含能材料, 2009, 17(6): 731-739. ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials[J]. Journal of Energetic Materials, 2009, 17(6): 731-739 (in Chinese).
[4]  王树山, 李朝君, 马晓飞. 钨合金破片对屏蔽装药撞击起爆的实验研究[J]. 兵工学报, 2001, 22(2): 189-191. WANG S S, LI C J, MA X F. An experimental study on the initiation of covered charge impacted by tungsten[J]. Journal of China Ordnance, 2001, 22(2): 189-191 (in Chinese).
[5]  陈伟, 赵文天, 王健, 等. 钨锆合金破片毁伤过程研究[J]. 兵器材料科学与工程, 2009, 32(2): 108-110. CHEN W, ZHAO W T, WANG J, et al. Study of damaging process for W-Zr alloy fragment[J]. Ordnance Material Science and Engineering, 2009, 32(2): 108-110 (in Chinese).
[6]  张将, 张先锋, 范秉源, 等. 钨锆合金的动态力学特性研究[J]. 兵器材料科学与工程, 2013, 36(1): 4-6. ZHANG J, ZHANG X F, FAN B Y, et al. Dynamic mechanical properties of W-Zr alloy[J]. Ordnance Material Science and Engineering, 2013, 36(1): 4-6 (in Chinese).
[7]  ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113(8): 083508.
[8]  JENNRICH A, DELANEY C, CLEMENSON M, et al. Ra-pid combustion of tungsten in W/Zr mechanical alloys[C]//Ohio: Dayton, Spring Technical Meeting of the Central States Section of the Combustion Institute, 2012.
[9]  COVERDILL A, DELANEY C, JENNRICH A, et al. Tungsten combustion in explosively initiated W/Zr mechanical alloys[J]. Journal of Energetic Materials, 2014, 32(3): 135-145.
[10]  任会兰, 龙波, 宁建国, 等. ZrO2增韧Al2O3陶瓷的力学性能和增韧机制[J]. 复合材料学报, 2015, 32(3): 776-781. REN H L, LONG B, NING J G, et al. Mechanical properties and toughening mechanisms of toughened ceramics[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 776-781 (in Chinese).
[11]  宁建国, 任会兰, 方敏杰. 基于椭圆形微裂纹演化与汇合的准脆性材料本构模型[J]. 科学通报, 2012, 57(21): 1978-1986. NING J G, REN H L, FANG M J. A constitutive model based on the evolution and coalescence of elliptical micro-cracks for quasi-brittle materials[J]. Chinese Science Bulletin, 2012, 57(21): 1978-1986 (in Chinese).
[12]  PAN Y, CHEN W, SONG B. Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens[J]. Experimental Mechanic, 2005, 45(5): 440-446.
[13]  罗骥, 曹慧钦, 贾步超, 等. 新型铜基受电弓滑板材料的制备与性能[J]. 复合材料学报, 2012, 29(2): 103-108. LUO J, CAO H Q, JIA B C, et al. Preparation and properties of the new type copper matrix pantograph slider[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 103-108 (in Chinese).
[14]  NAGENDER N S V, RAMA R P. Phase diagrams of binary tungsten alloys[M]. Calcutta: Indian Institute of Metals, 1991: 7-13.
[15]  FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106.
[16]  FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J]. Experimental Mechanics, 2001, 41(1): 40-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133