全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

双稳态复合材料层合结构的黏弹性模型
Viscoelastic model of bistable composite laminated structures

DOI: 10.13801/j.cnki.fhclxb.20160201.001

Keywords: 纤维复合材料,有限元法,黏弹性,双稳态,层合结构
fiber composite
,finite element method,viscoelasticity,bistable,laminated structures

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探明双稳态复合材料层合结构在复杂环境条件下的应用,对双稳态复合材料层合结构的黏弹性行为进行了研究。首先,将纤维简化为弹性材料,考虑基底材料的黏弹性行为。然后,根据纤维和基底的材料属性,通过理论分析得到了双稳态复合材料层合结构的黏弹性材料属性;根据经典层合板理论、最小应变能原理和Maxwell黏弹性模型建立了双稳态复合材料层合结构的黏弹性模型,通过理论分析得到其第二稳态主曲率与扭曲率随加载时间和温度的变化关系。同时,利用有限元软件ABAQUS及其子程序UMAT建立了相应的有限元模型,研究了加载时间和温度对层合结构第二稳态性能的影响。理论与模拟结果均表明:层合结构第二稳态主曲率随加载时间的延长和温度的升高而增大;扭曲率随加载时间的延长而减小,一般情况下随温度的升高而增大,但在加载时间较长且温度较高时,可能会出现扭曲率随温度升高而减小的情况。理论计算结果与有限元模拟结果的比较显示两者吻合较好,可以通过有限元模拟对双稳态复合材料层合结构的黏弹性行为进行研究。 In order to ascertain the applications of bistable composite laminated structures in complicated environment, the viscoelastic behaviors of bistable composite laminated structures were investigated. The fiber was reduced to elastic material and the viscoelastic behaviors of matrix material were taken into consideration firstly. Then, based on the material properties of fiber and matrix, the viscoelastic material properties of the bistable composite laminated structure were obtained by theoretical analyses. A viscoelastic model of the bistable composite laminated structure was developed on the foundation of classical lamination theory, the principle of minimum potential energy and Maxwell viscoelasticity model, and the changing relationships between the second stable principal curvature, twist curvature and loading time, temperature were obtained by theoretical analyses. At the same time, the corresponding finite element model was developed using finite element software ABAQUS and its subroutine UMAT, and the influences of loading time and temperature on the second stable properties of laminated structures were investigated. Both of the theoretical and simulation results show that the second stable principal curvature of laminated structures increases with the loading time extension and temperature increasing. The twist curvature decreases with the loading time extension and increases with the temperature increasing in general case, but when the loading time is relatively long and the temperature is relatively high, may appear the circumstance of twist curvature decreases with the temperature increasing. The comparison of theoretical results and finite element simulation results show that both of them fit well, and it is feasible to investigate the viscoelastic behaviors of the bistable composite laminated structures by finite element simulation. 国家自然科学基金(51675485);浙江省自然科学基金(LY15E050016);高等学校博士学科点专项科研基金(20123317120003)

References

[1]  ZHANG Z, WU H, WU H, et al. Bistable characteristics of irregular anti-symmetric lay-up composite cylindrical shells[J]. International Journal of Structural Stability and Dynamics, 2013, 13(6): 1350029.
[2]  JHA A K, KUDVA J N. Morphing aircraft concepts classifications and challenges[C]//Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. Bellingham: Society of Photo-Optical Instrumentation Engineers, 2004: 213-224.
[3]  冯青, 李敏, 顾轶卓, 等. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J]. 复合材料学报, 2010, 27(6): 16-20. FENG Q, LI M, GU Y Z, et al. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 16-20 (in Chinese).
[4]  KWOK K, PELLEGRINO S. Folding, stowage and deployment of viscoelastic tape springs[J]. AIAA Journal, 2013, 51(8): 1908-1918.
[5]  KWOK K. Mechanics of viscoelastic thin-walled structures[D]. Pasadena: California Institute of Technology, 2013.
[6]  BRINKMEYER A, PELLEGRINO S, WEAVER P M, et al. Effects of viscoelasticity on the deployment of bistable tape springs[C]//19th International Conference on Composite Materials. Montreal: SPIE, 2013: 119-187.
[7]  ZHANG Z, WU H, YE G, et al. Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells[J]. Composite Structures, 2014, 112: 368-377.
[8]  LACHENAL X, DAYNES S, WEAVER P M. Review of morphing concepts and materials for wind turbine blade applications[J]. Wind Energy, 2013, 16(2): 283-307.
[9]  PONTECORVO M E, BARBARINO S, MURRAY G J, et al. Bistable arches for morphing applications[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(3): 274-286.
[10]  ZHANG Z, YE G, WU H, et al. Thermal effect and active control on bistable behaviour of anti-symmetric composite shells with temperature-dependent properties[J]. Composite Structures, 2015, 124: 263-271.
[11]  MOUREM M, ADAMS D. Deployment analysis of the lenticular jointed antennas onboard the Mars Express spacecraft[J]. Journal of Spacecraft and Rocket, 2009, 46(2): 394-402.
[12]  BARBERO E J. Finite element analysis of composite materials using ABAQUSTM[M]. Boca Raton: CRC Press, 2013: 280-300.
[13]  蔡峨. 粘弹性力学基础[M]. 北京: 北京航空航天大学出版社, 1989: 30-34. CAI E. Viscoelastic mechanical foundation[M]. Beijing: Beihang University Press, 1989: 30-34 (in Chinese).
[14]  BARBERO E J, LUCIANO R. Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[J]. Solids and Structures, 1995, 32(13): 1859-1872.
[15]  WANG B, FANCEY K S. A bistable morphing composite using viscoelastically generated prestress[J]. Materials Letters, 2015, 158: 108-110.
[16]  于航, 周储伟. 纤维复合材料粘弹性动态性能的细观力学分析[J]. 振动工程学报, 2011, 24(4): 359-362. YU H, ZHOU C W. Meso-mechanical analysis on dynamic viscoelasticity of fiber-reinforced composites[J]. Journal of Vibration Engineering, 2011, 24(4): 359-362 (in Chinese).
[17]  WILLIAMS M L, LANDEL R F, FERRY J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133