全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

各向异性复合材料开孔板拉伸强度预测及模型验证
Tensile strength prediction and model validation of anisotropic composite laminates with open holes

DOI: 10.13801/j.cnki.fhclxb.20160315.009

Keywords: 复合材料,开孔板,拉伸强度,有限断裂力学,断裂韧性
composite
,open-hole laminates,tensile strength,finite fracture mechanics,fracture toughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于有限断裂力学方法建立了一种预测多向复合材料开孔板拉伸强度的通用和半经验模型。该模型同时采用基于应力形式的失效准则和基于能量形式的失效准则预测失效。模型仅需铺层弹性常数、无缺口层合板的强度以及0°铺层的断裂韧性等参数。基于线弹性断裂力学建立了多向复合材料层合板的断裂韧性与0°铺层断裂韧性之间的关系, 进而预测了任意铺层复合材料开孔板发生纤维主导拉伸失效时的强度。将模型预测结果与开孔板拉伸强度的试验数据进行了对比验证, 预测误差最大为9.7%, 与点应力和平均应力等方法的对比表明, 该模型的预测精度高于传统的特征长度方法。 A general and semi-empirical model was developed to predict the tensile strength of multidirectional composite laminates with open-holes using the finite fracture mechanics method. Both stress-based and energy-based failure criteria were used to predict failure in this model. The ply elastic constants, the laminate unnotched strength and the fracture toughness of 0° plies were the only material properties required by the model. The relation between fracture toughness of multidirectional composite laminate and that of 0° plies was established based on linear fracture mechanics. The strength of an open-hole composite laminate with any fiber dominated lay-ups was predicted. The model was validated by comparing its prediction results with test data of open-hole composite laminates. The maximum predicting error is 9.7%. The model was also compared with point stress method and average stress method and results show that the present model provides more accurate predictions than the traditronal length method. 国家自然科学基金(U1233202)

References

[1]  LAPCZYK I, HURTADO J A. Progressive damage modeling in fiber reinforced materials[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(11): 2333-2341.
[2]  NEWMAN J C J R. A nonlinear fracture mechanics approach to the growth of small cracks: AGARD CP-328[R]. Toronto: AGARD, 1983.
[3]  欧阳洁, 聂玉峰, 车刚明, 等. 数值分析[M]. 北京: 高等教育出版社, 2009: 169-170. OUYANG J, NIE Y F, CHE G M, et al. Numerical analysis[M]. Beijing: Higher Education Press, 2009: 169-170 (in Chinese).
[4]  American Society for Testing and Materials International. Standard test method for open-hole tensile strength of polymer matrix composite laminates: ASTM D 5766/D 5766M—02a[S]. West Conshohocken: ASTM International, 2002.
[5]  American Society for Testing and Materials International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D 3039/D 3039M—00[S]. West Conshohocken: ASTM International, 2000.
[6]  DHARMAWAN F, WANG C H, RIDER A. Computational analysis of the influence material orthotropy on the residual strength of laminated composites[C]//TEH K, DAVIES I, HOWARD I. Proceedings of the 6th Australian Congress on Applied Mechanics. Perth: Engineers Australia, 2010: 1422-1433.
[7]  黎增山, 关志东, 何为, 等 复合材料层板开孔拉伸损伤分析[J]. 复合材料学报, 2012, 29(1): 169-175. LI Z S, GUAN Z D, HE W, et al. Damage analysis of open-hole tension laminates[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 169-175 (in Chinese).
[8]  吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1): 94-104. WU Y T, YAO W X, WU F Q. CDM model for intralaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 94-104 (in Chinese).
[9]  李明, 马力, 吴林至, 等. 含孔复合材料层合板拉伸强度研究[J]. 哈尔滨工业大学学报, 2011, 43(1): 1-5. LI M, MA L, WU L Z, et al. Tensile strength of composite laminated plate containing a hole[J]. Journal of Harbin Institute of Technology, 2011, 43(1): 1-5 (in Chinese).
[10]  李彪, 李亚智, 丁瑞香. 基于物理机制的层合板失效分析方法[J]. 复合材料学报, 2013, 30(增刊1): 158-162. LI B, LI Y Z, DING R X. Physically based failure analysis method for laminated composites[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl. 1): 158-162 (in Chinese).
[11]  RIDHA M, WANG C H, CHEN B Y, et al. Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 16-23.
[12]  MAIMí P, CAMANHO P P, MAYUGO J A, et al. A continuum damage model for composite laminates: Part II—Computational implementation and validation[J]. Mechanics of Materials, 2007, 39(10): 909-919.
[13]  谢鸣九. 复合材料连接手册[M]. 上海: 上海交通大学出版社, 2011: 348-349. XIE M J. Joints for composite materials handbook[M]. Shanghai: Shanghai Jiao Tong University Press, 2011: 348-349 (in Chinese).
[14]  LEGUILLON D. Strength or toughness? A criterion for crack onset at a notch[J]. European Journal Mechanics-A/Solids, 2002, 21(1): 67-72.
[15]  CAMANHO P P, ER?IN G H, CATALANOTTI G, et al. A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(8): 1219-1225.
[16]  WADDOUPS M E, EISENMANN J R, KAMINSKI B E. Macroscopic fracture mechanics of advanced composite materials[J]. Journal of Composite Materials, 1971, 5: 446-454.
[17]  TAN S C, KIM R Y. Strain and stress concentrations in composite laminates[J]. Experimental Mechanics, 1990, 30(4): 345-351.
[18]  BAO G, HO S, SUO Z, et al. The role of material orthotropy in fracture specimens for composites[J]. International Journal of Solids and Structures, 1992, 29(9): 1105-1116.
[19]  CAMANHO P P, CATALANOTTI G. On the relation between the mode I fracture toughness of a composite laminate and that of a 0° ply: Analytical model and experiment validation[J]. Engineering Fracture Mechanics, 2011, 78(13): 2535-2546.
[20]  VAIDYA R S, SUN C T. Fracture criterion for notched thin composite laminates[J]. AIAA Journal, 1997, 35(2): 311-316.
[21]  KAGEYAMA K. Fracture mechanics of notched carbon/epoxy laminates[M]//FRIEDRICH K. Application of Fracture Mechanics to Composite Materials. Amsterdam: Elsevier Science Publishers, 1989: 327-396.
[22]  WHITNEY J M, NUISMER R J. Stress fracture criteria for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1974, 8(3): 253-265.
[23]  唐玉玲, 沣世东, 周振功, 等. 含孔和切口C/C编织复合材料静态拉伸下的力学性能[J]. 复合材料学报, 2013, 30(3): 87-92. TANG Y L, PAN S D, ZHOU Z G, et al. Mechanical properties analysis of 3D C/C braided composite opening structures under static tension[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 87-92 (in Chinese).
[24]  铁瑛, 赵华东, 张宝森. 基于0°层应力的含缺口层合板剩余强度研究[J]. 玻璃钢/复合材料, 2013(8): 16-20. TIE Y, ZHAO H D, ZHANG B S. Residual strengths study of laminate containing notch based on 0° layer stress[J]. Fiber Reinforced Plastics/Composites, 2013(8): 16-20 (in Chinese).
[25]  CHANG F K, SCOTT R A, SPRINGER G S. Strength of mechanically fastened composite joints[J]. Journal of Composite Materials, 1982, 16(6): 470-494.
[26]  YORK J L, WILSON D W, PIPES R B. Analysis of the net-tension failure mode in composite joints[J]. Journal of Reinforced Plastics Composites, 1982, 1(2): 141-152.
[27]  CORNETTI P, PUGNO N, CARPINTERI A, et al. Finite fracture mechanics: A coupled stress and energy failure criterion[J]. Engineering Fracture Mechanics, 2006, 73(14): 2021-2033.
[28]  WEIβGRAEBER P, BECKER W. Finite fracture mechanics model for mixed mode fracture in adhesive joints[J]. International Journal of Solids and Structures, 2013, 50(14-15): 2383-2394.
[29]  SAPORA A, CORNETTI P, CARPINTERI A, et al. An improved finite fracture mechanics approach to blunt V-notch brittle fracture mechanics: Experimental verification on ceramic, metallic, and plastic materials[J]. Theoretical and Applied Fracture Mechanics, 2015, 78: 20-24.
[30]  CARPINTERI A, CORNETTI P, SAPORA A. A finite fracture mechanics approach to the asymptotic behaviour of U-notched structures[J]. Fatigue & Fracture of Engineering Material & Structures, 2012, 35(5): 451-457.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133