|
- 2018
球磨共混制备优异抗原子氧性能的氧化石墨烯/聚酰亚胺复合薄膜
|
Abstract:
通过简单的机械共混(球磨共混)和高温压制的方法,制备了一系列具有良好抗原子氧(AO)性能的氧化石墨烯/聚酰亚胺(GO/PI)复合薄膜。微量(0.5wt%) GO的引入可使GO/PI复合薄膜的抗AO性能提高17.9%。同时,含0.5wt% GO的GO/PI复合薄膜也表现出良好的热稳定性能和力学性能。热重分析表明,含0.5wt% GO的GO/PI复合薄膜在质量损失为5%时的温度(Td5)为519.4℃,比纯PI薄膜高14.7℃;拉伸强度为111.9 MPa,杨氏模量为2.1 GPa,与纯PI薄膜相比,分别提高了4.3 MPa和0.1 GPa。与传统的原位聚合法相比,机械共混-高温压制的方式更易于操作和控制,使具有优异综合性能的GO/PI复合薄膜的大规模量产成为可能。 A series of graphene oxide/polyimide (GO/PI) composite films with excellent atomic oxygen (AO) resistance property was prepared by simple mechanical mixing (i.e. ball milling) of GO and PI followed by thermal compression. With a tiny addition of GO (0.5wt%), AO resistance property of GO/PI composite films with 0.5wt% GO addition is improved by approximately 17.9%, compared to the pure PI film. GO/PI composite films with 0.5wt% GO addition demonstrate excellent thermal stability and mechanical properties. The 5% mass loss temperature (Td5) in nitrogen is 519.4℃, 14.7℃ higher than that of the pure PI film; the tensile strength and Young's modulus are 111.9 MPa and 2.1 GPa, 4.3 MPa and 0.1 GPa higher than those of the pure PI film, respectively. Compared to in situ polymerization used to fabricate GO/PI composite films, our method is much easier to operate and control, which makes it possible to manufacture GO/PI composite films with excellent comprehensive properties on a large scale. 国家自然科学基金(21676217;51503170);高分子材料工程国家重点实验室(四川大学)(sklpme2015-4-22);西北工业大学中央高校基础研究基金(3102016BJY01)
[1] | TENNYSON R. The behavior of systems in the space environment:Atomic oxygen and its effect on materials[M]. Berlin:Springer, 1993. |
[2] | YOONESSI M, SHI Y, SCHEIMAN D A, et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects[J]. ACS Nano, 2012, 6(9):7644-7655. |
[3] | SANDERS J H, TATARCHUK B J. Pinhole plugging characteristics of silica/iron/silver protective coatings in atomic oxygen environments[J]. Thin Solid Films, 1990, 192(1):79-95. |
[4] | RUTLEDGE S K, MIHELCIC J A. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen[J]. Surface and Coatings Technology, 1989, 39-40(1-3):607-615. |
[5] | 赵伟, 李卫平, 刘慧丛, 等. 氨丙基倍半硅氧烷/有机硅杂化涂层抗原子氧侵蚀[J]. 复合材料学报, 2010, 27(4):106-110. ZHAO W, LI W P, LIU H C, et al. Atomic oxygen erosion resistance of aminopropylsilsesequioxane/silicone hybrid coating[J]. Acta Materiae Compositae Sinica, 2010, 27(4):106-110(in Chinese). |
[6] | 王静, 朱立群, 李卫平, 等. 有机硅微胶囊-有机硅树脂复合涂层对空间Kapton的原子氧防护[J]. 复合材料学报, 2009, 26(4):36-40. WANG J, ZHU L Q, LI W P, et al. Atomic oxygen erosion resistance of microcapsules-silicone coatings on Kapton[J]. Acta Materiae Compositae Sinica, 2009, 26(4):36-40(in Chinese). |
[7] | LEI X F, CHEN Y, ZHANG H P, et al. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10207-10220. |
[8] | LI Z, SONG H W, HE M H, et al. Atomic oxygen-resistant and transparent polyimide coatings from 3,5-bis(3-aminophenoxy)phenyl diphenylphosphine oxide and aromatic dianhydrides:Preparation and characterization[J]. Progress in Organic Coatings, 2012, 75(1-2):49-58. |
[9] | LIU B X, PEI X Q, WANG Q H, et al. Structural and tribological properties of polyimide/Al2O3/SiO2 composites in atomic oxygen environment[J]. Journal of Macromolecular Science-Physics, 2012, 51(1-3):224-234. |
[10] | LV M, WANG Q H, WANG T M, et al. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications[J]. Composites Part B:Engineering, 2015, 77:215-222. |
[11] | LIU P J, YAO Z J, LI L, et al. In situ synthesis and mechanical, thermal properties of polyimide nanocomposite film by addition of functionalized graphene oxide[J]. Polymer Composites, 2016, 37(3):907-914. |
[12] | TITELMAN G I, GELMAN V, BRON S, et al. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide[J]. Carbon, 2010, 43(3):641-649. |
[13] | LEI X F, QIAO M T, TIAN L D, et al. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment[J]. Corrosion Science, 2015, 98:560-572. |
[14] | HUANG T, XIN Y, LI T, et al. Modified graphene/polyimide nanocomposites:Reinforcing and tribological effects[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4878-4891. |
[15] | DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1):228-240. |
[16] | WANG J Y, YANG S Y, HUANG Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry, 2011, 21(35):13569-13575. |
[17] | LI Y, SHEN B, PEI X L, et al. Ultrathin carbon foams for effective electromagnetic interference shielding[J]. Carbon, 2016, 100:375-385. |
[18] | 张雯, 易敏, 沈志刚, 等. 石墨烯用于提高材料抗原子氧剥蚀性能[J]. 北京航空航天大学学报, 2014, 40(2):172-176. ZHANG W, YI M, SHEN Z G, et al. Application of graphene on improving atomic oxygen resistance of material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):172-176(in Chinese). |
[19] | HA H W, CHOUDHURY A, KAMAL T, et al. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites[J]. ACS Applied Materials & Interfaces, 2012, 4(9):4623-4630. |
[20] | LIAO W H, YANG S Y, HSIAO S T, et al. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites[J]. ACS Applied Materials & Interfaces, 2014, 6(18):15802-15812. |
[21] | 郝继璨, 鲁云华, 肖国勇, 等. 原位氨基化氧化石墨烯/聚酰亚胺复合材料的制备及性能[J]. 复合材料学报, 2018, 35(6):1377-1385. HAO J C, LU Y H, XIAO G Y, et al. Preparation and properties of in-situ aminated graphene oxide/polyimide composites[J]. Acta Materiae Compositae Sinica, 2018, 35(6):1377-1385(in Chinese). |
[22] | REN P G, YAN D X, CHEN T, et al. Improved properties of highly oriented graphene/polymer nanocomposites[J]. Journal of Applied Polymer Science, 2011, 121(6):3167-3174. |
[23] | 全国塑料标准化技术委员会. 塑料拉伸性能试验方法:GB/T 1040-1992[S]. 北京:中国标准出版社, 1993. National Standardization Technical Committee for Plastic Products. Plastics:Determination of tensile properties:GB/T 1040-1992[S]. Beijing:China Standards Press, 1993(in Chinese). |
[24] | HASAN S A, RIGUEUR J L, HARL R R, et al. Transferable graphene oxide films with tunable microstructures[J]. ACS Nano, 2010, 4(12):7367-7372. |