全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

氧化石墨烯/纳米羟基磷灰石复合粉体的制备及其细胞毒性
Preparation and cytotoxicity of graphene oxide/nano hydroxyapatite composite powder

DOI: 10.13801/j.cnki.fhclxb.20171206.004

Keywords: 共滴定法,纳米羟基磷灰石,氧化石墨烯,复合材料,生物学性能
simultaneous titration
,nano-hydroxyapatite,graphene oxide,composites,biological performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用改进Hummers法制备了氧化石墨烯(GO),再与Ca(NO3)2和(NH4)2HPO4通过溶液离子共滴定法制备GO/纳米羟基磷灰石(nHAP)复合粉体材料。利用TEM、XRD、FTIR、XPS等分析了GO/nHAP复合粉体的形貌、相结构、官能团以及元素化学价态变化,最后通过3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴(MTT)法对GO/nHAP粉体复合材料的生物学性能进行检测。结果表明:GO/nHAP复合粉体中nHAP呈现晶簇针状,且分散均匀,尺寸约为50~100 nm,GO片层尺寸为1 000~4 000 nm;nHAP在GO表层原位形核,并沿着(112)晶面择优生长,两相通过化学键的形式结合;GO/nHAP复合粉体材料无细胞毒性。 The graphene oxide (GO) was synthesized by the modified Hummers' method, then GO and Ca(NO3)2 and (NH4)2HPO4 were prepared to synthesize the GO/nano hydroxyapatite (nHAP) composites powder by simultaneous titration method. The morphology, phases, chemical groups and element valence of the GO/nHAP composites powder were investigated by TEM, XRD, FTIR and XPS, and the biological performance of GO/nHAP composite powder was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The results show that the nHAP in the GO/nHAP composites appears drusy acicular crystal structure and disperses evenly. The size of drusy acicular crystals is about 50-100 nm, and the size of graphene oxide sheets is 1 000-4 000 nm. nHAP nucleates in situ on the surface of the GO and grows along the (112) plane preferentially, and the two phases are bound to each other by chemical bonds. The GO/nHAP composites powder exhibit no cytotoxicity. 国家自然科学基金(31260228)

References

[1]  O'HARE P, MEENAN B J, BURKE G A, et al. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique[J]. Biomaterials, 2010, 31(3):515-522.
[2]  朱武, 朱东波, 周科朝, 等. 羟基磷灰石复合骨替代材料的研究现状与发展趋势[J]. 材料导报, 2005, 19(2):344-347. ZHU W, ZHU D B, ZHOU K C. Hydroxyapatite bone replacement composites:Current status and future directions[J]. Materials Review, 2005, 19(2):344-347(in Chinese).
[3]  WANG G M, QIAN F, SALTIKOV C W, et al. Microbial reduction of graphene oxide by shewanella[J]. Nano Research, 2011, 4(6):563-570.
[4]  TITOV A V, KRáL P, PEARSON R. Sandwiched graphene-membrane superstructures[J]. ACS nano, 2009, 4(1):229-234.
[5]  GOENKA S, SANT V, SANT S. Graphene-based nanomaterials for drug delivery and tissue engineering[J]. Journal of Controlled Release, 2014, 173:75-88.
[6]  GAO F, WANG Q, GAO N, et al. Hydroxyapatite/chemically reduced graphene oxide composite:Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine[J]. Biosensors & Bioelectronics, 2017, 97:238-245.
[7]  马晓红, 赵建国, 鲍居宇. 炭材料在生物医学领域的应用和进展[J]. 生物骨科材料与临床研究, 2009, 6(3):1-5MA X H, ZHAO J G, BAO J Y. The application and development of carbon materials in biomedical field[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2009, 6(3):1-5(in Chinese).
[8]  RAMADAS M, BHARATH G, PONPANDIAN N, et al. Investigation on biophysical properties of hydroxyapatite/graphene oxide (HAP/GO) based binary nanocomposite for biomedical applications[J]. Materials Chemistry & Physics, 2017, DOI:10.1016/j. matchemphys. 2017.07.001.
[9]  FAN Z, WANG J, WANG Z, et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering[J]. Carbon, 2014, 66(1):407-416.
[10]  XIONG G, LUO H, ZUO G, et al. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications[J]. Materials Characterization, 2015, 107:419-425.
[11]  BARADARAN S, MOGHADDAM E, BASIRUN W J, et al. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite[J]. Carbon, 2014, 69(4):32-45.
[12]  WANG J, OUYANG Z, REN Z, et al. Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite[J]. Carbon, 2015, 89:20-30.
[13]  RAJESH A, MANGAMMA G, SAIRAM T N, et al. Physicochemical properties of nanocomposite:Hydroxyapatite in reduced graphene oxide[J]. Materials Science & Engineering C:Materials for Biological Applications, 2017, 76:203-210.
[14]  HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[15]  EILBAGI M, EMADI R, RAEISSI K, et al. Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration[J]. Materials Science & Engineering C, 2016, 68:603-612.
[16]  LI M, LIU Q, JIA Z, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications[J]. Carbon, 2014, 67(34):185-197.
[17]  杨洪, 张昊烨, 陈新艳. 氧化石墨烯增强磷酸钙生物水泥[J]. 复合材料学报, 2016, 33(4):852-858. YANG H, ZHANG H Y, CHEN X Y. Graphene oxide reinforced calcium phosphate bio-cement[J]. Acta Materiae Compositae Sinica, 2016, 33(4):852-858(in Chinese).
[18]  中国国家标准化管理委员会. 医疗器械生物学评价第12部分:样品制备与参照样品:GB/T 16886.12-2005[S]. 北京:中国标准出版社, 2005. Standardization Administration of the People's Republic of China. Biological evaluation of medical devices part 12:Sample preparation and reference materials:GB/T 16886.12-2005[S]. Beijing:China Standards Press, 2005(in Chinese).
[19]  PRABHU S M, ELANCHEZHIYAN S, LEE G, et al. Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ, fabrication method and its prospective application for defluoridation studies[J]. Chemical Engineering Journal, 2016, 300:334-342.
[20]  N AU'G ?EZ J D, BENITO A M, GONZáLEZ R, et al. Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide[J]. Carbon, 2014, 79(1):590-604.
[21]  LOW I M. Depth-profiling of crystal structure, texture, and microhardness in a functionally graded tooth enamel[J]. Journal of the American Ceramic Society, 2004, 87(11):2125-2131.
[22]  柏彬, 肖玉周. 骨组织工程的研究进展[J]. 解剖与临床, 2010, 15(4):287-289. BO B, XIAO Y Z. Research progression on bone tissue en-gineering[J]. Anatomy and Clinics, 2010, 15(4):287-289(in Chinese).
[23]  YU P, BAO R Y, SHI X J, et al. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering[J]. Carbohydrate Polymers, 2017, 155:507-515.
[24]  NIE W, PENG C, ZHOU X, et al. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering[J]. Carbon, 2017, 116:325-337.
[25]  胡晓兰, 谢鹏辉, 王雯皓, 等. 原位增强羟基磷灰石/壳聚糖复合棒材[J]. 复合材料学报, 2011, 28(2):123-129. HU X L, XIE P H, WANG W H, et al. In situ enhancement of hydroxyapatite/chitosan composite rods[J]. Acta Materiae Compositae Sinica, 2011, 28(2):123-129(in Chinese).
[26]  STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133