|
- 2016
石墨烯/聚砜酰胺复合薄膜的结构与性能
|
Abstract:
采用旋涂法将石墨烯和聚砜酰胺(PSA)制成不同石墨烯质量分数的石墨烯/PSA复合薄膜,利用光学显微镜、傅里叶变换红外光谱、表面电阻测试、热失重分析和紫外光谱表征和分析石墨烯/PSA复合薄膜的化学组成、大分子结构、热性能、导电性能、力学性能和抗紫外性能。结果表明:少量的石墨烯可均匀分散于PSA基体中,其加入基本没有改变PSA的化学结构;石墨烯二维纳米材料可作为异相成核剂,有助于提高复合薄膜的结晶度,其加入使复合薄膜的力学性能和热性能也有所提高;当石墨烯质量分数为0.1%时,石墨烯/PSA复合薄膜的表面比电阻由纯PSA薄膜的3.10×1012 Ω迅速降至1.40×106 Ω,随着石墨烯质量分数的增大,石墨烯/PSA复合薄膜的导电性能随之提高。石墨烯对加强复合薄膜对紫外光的吸收和散射、提高其抗紫外线性能有重要作用。 Graphene/polysulfone amide (PSA) composite films with different mass fractions of graphene were prepared by spin-coating technique. The chemical composition, macromolecular structure, thermal property, electrical properties, mechanical properties and ultraviolet resistance were characterized and analyzed by means of optical microscopy, Fourier transform infrared spectrometer, surface resistance testing, thermal gravimetric analysis and ultraviolet spectrum. The results show that small amount of graphene can be evenly dispersed in PSA substrate, and the introducing of graphene does not change the chemical structure of PSA. The crystallinity of the composite membranes can be improved because the graphene 2D nano material can act as a nucleation agent. The mechanical properties and thermal properties of composite membranes can be improved correspondingly. When the mass fraction of graphene is 0.1%, the surface specific resistance of graphene/PSA composite membranes decreases to 1.40×106 Ω quickly, while that of pure PSA membrane is 3.10×1012 Ω. As the mass fraction of graphene increases, the electrical properties of graphene/PSA composite membranes improves correspondingly. Graphene plays an important role in strengthening the absorption and scattering of ultraviolet light and improving ultraviolet resistance. 上海工程技术大学研究生科研创新项目(E1-0903-14-01159)
[1] | ZHANG H B, ZHENG W G, YAN Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer: The International Journal for the Science and Technology of Polymers, 2010, 51(5): 1191-1196. |
[2] | ANSARI S, GIANNELIS E. Functionalized graphene sheet-poly (vinylidene fluoride) conductive nanocomposites[J]. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47(9): 888-897. |
[3] | CHOI J T, KIM D H, RYU K S. Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties[J]. Macromolecular Research, 2011, 19(8): 809-814. |
[4] | 汪文, 丁宏亮, 张子宽, 等. 石墨烯微片/聚丙烯导热复合材料的制备与性能[J]. 复合材料学报, 2013, 30(6): 14-20. WANG W, DING H L, ZHANG Z K, et al. Preparation and properties of graphene nanoplatelets/PP thermal conductive composites[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 14-20 (in Chinese). |
[5] | 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1): 14-21. FAN W, ZHANG C, LIU T X. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 14-21 (in Chinese). |
[6] | 张立德. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2001: 60. ZHANG L D. Nano materials and nano structures[M]. Beijing: Science Press, 2001: 60 (in Chinese). |
[7] | 徐家壮, 唐虎, 李忠明. 低维度碳纳米填料诱导聚合物结晶[J]. 高分子通报, 2011(1): 16-23. XU J Z, TANG H, LI Z M. Low-dimensional carbon nanofillers induced the crystallization of polymers[J]. Polymer Bulletin, 2011(1): 16-23 (in Chinese). |
[8] | RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12): 3884-3890. |
[9] | SIMMONS J G. Generalized formula for the electric tunnel effect between similiar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803. |
[10] | ROBINSON J T, ZALALUTDINOV M, BALDWIN J, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices[J]. Nano Letters, 2008, 8(10): 3441-3445. |
[11] | ZHAO X, ZHANG Q H, CHEN D J, et al. Enhanced mechanical properties of graphene-based polyvinyl alcohol composites[J]. Macromolecules, 2010, 43(5): 2357-2363. |
[12] | LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Materials, 2009, 19(14): 1-6. |
[13] | SHENG P, KLAFTER J. Hopping conductivity in granular disordered systems[J]. Physical Review B, 1983, 27(4): 597-600. |
[14] | EZQUERRA T A, KULESCZA M, CRUZ C S, et al. Charge transport in polyethylene-graphite composite materials[J]. Advanced Materials, 1990, 2(12): 597-600. |
[15] | VAN BEEK L K H, VAN PUL B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates[J]. Journal of Applied Polymer Science, 1962, 6(24): 651-655. |
[16] | NOVOSELOV K S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
[17] | GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
[18] | RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777. |
[19] | LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5881): 385-388. |
[20] | 喻佳丽, 辛斌杰. 铜基底化学气相沉积石墨烯的研究现状与展望[J]. 材料导报, 2015, 29(1): 66-71. YU J L, XIN B J. Research status and prospect of chemical vapor deposition growth of graphene on copper substrate[J]. Materials Review, 2015, 29(1): 66-71 (in Chinese). |
[21] | HUANG X, QI X Y, BOEY F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686. |
[22] | 孙淑香, 卢智敏, 石风俊, 等. 芳砜纶纤维结构和性能的研究[J]. 河南科学, 2013(2): 161-164. SUN S X, LU Z M, SHI F J, et al. Structure and properties of polysulfonamide fiber[J]. Henan Science, 2013(2): 161-164 (in Chinese). |
[23] | 汪晓峰, 张玉华. 芳砜纶的性能及其应用[J]. 纺织导报, 2005(1): 18-23. WANG X F, ZHANG Y H. Properties and application of polysulfonamide fiber[J]. China Textile Leader, 2005(1): 18-23 (in Chinese). |
[24] | 陈卓明, 辛斌杰, 吴湘济, 等. 功能性聚砜酰胺纳米复合材料的研究现状与分析[J]. 产业用纺织品, 2011, 29(6): 1-8. CHEN Z M, XIN B J, WU X J, et al. Research status and analysis of functional polysulfone amide nanocomposites[J]. Technical Textiles, 2011, 29(6): 1-8 (in Chinese). |
[25] | 辛斌杰, 陈卓明, 吴湘济, 等. 聚砜酰胺/碳纳米管复合材料的热稳定性研究[J]. 材料导报, 2012, 26(16): 31-34. XIN B J, CHEN Z M, WU X J, et al. Study on the thermal stability of PSA/CNT composites[J]. Materials Review, 2012, 26(16): 31-34 (in Chinese). |
[26] | WANG X, XING W Y, SONG L, et al. Preparation of UV-curable functionalized graphene/polyurethane acrylate nanocomposite with enhanced thermal and mechanical behaviors[J]. Reactive & Functional Polymers, 2013, 73(6): 854-858. |
[27] | 陈卓明, 辛斌杰, 吴湘济, 等. 聚砜酰胺/纳米二氧化钛复合材料的制备与表征[J]. 合成纤维, 2011, 40(12): 1-5. CHEN Z M, XIN B J, WU X J, et al. Preparation and characterization of PSA/nano-TiO2 composites[J]. Synthetic Fiber in China, 2011, 40(12): 1-5 (in Chinese). |