全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

复合磁性催化剂β-MnO2/MnxZn1-xFe2O4的制备与表征
Preparation and characterization of composite magnetic catalyst β-MnO2/MnxZn1-xFe2O4

DOI: 10.13801/j.cnki.fhclxb.20170413.003

Keywords: 复合磁性催化剂,MnO2,MnxZn1-xFe2O4,化学共沉淀法,罗丹明
composite magnetic catalyst
,MnO2,MnxZn1-xFe2O4,chemical co-precipitation method,Rhodamine B

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用化学共沉淀法制备了以MnxZn1-x Fe2O4为磁性基体的β-MnO2/MnxZn1-xFe2O4复合磁性催化剂,利用XRD、SEM、FTIR和超导量子干涉仪对复合磁性催化剂的结构和性能进行了表征,以罗丹明B (RhB)为模拟污染物,研究了β-MnO2/MnxZn1-xFe2O4的催化活性,并考察了其稳定性。结果表明,球状的β-MnO2与块状的磁性基体MnxZn1-xFe2O4成功复合,且制备的β-MnO2/MnxZn1-xFe2O4复合磁性催化剂具有良好的催化性能和磁学性能。当MnxZn1-xFe2O4与β-MnO2的质量比为20:100时,在2 mL含量为30%的H2O2作用下,1 h内β-MnO2/MnxZn1-xFe2O4复合磁性催化剂对100 mL浓度为10 mg/L的RhB降解率(93.9%)远高于纯β-MnO2(33.7%);在磁场作用下,β-MnO2/MnxZn1-xFe2O4复合磁性催化剂的回收率为89%,经过5次循环利用之后其对RhB的降解率仍达76%。 The β-MnO2/MnxZn1-xFe2O4 composite magnetic catalyst was synthesized via chemical co-precipitation method, and the structure and performance of the composite were characterized by XRD, SEM, FTIR and superconducting quantum interference device (SQUID). The catalytic activity of β-MnO2/MnxZn1-xFe2O4 was studied by using Rhodamine B (RhB) as a simulated pollutant, and its stability was also studied. The results show that the spherical β-MnO2 and magnetic substrates MnxZn1-xFe2O4 are successfully combined together. The β-MnO2/MnxZn1-xFe2O4 composite magnetic catalyst has good catalytic and magnetic properties. When the mass ratio of MnxZn1-xFe2O4 and β-MnO2 is 20:100, in the presence of 2 mL of H2O2 (30%), the degradation rate of RhB at a concentration of 10 mg/L (100 mL) in β-MnO2/MnxZn1-xFe2O4 composite magnetic catalyst (93.9%) is higher than that in pure β-MnO2 (33.7%) within 1 h. Under the magnetic field, the recovery rate of the β-MnO2/MnxZn1-xFe2O4 composite magnetic catalyst is 89%, and the degradation rate of RhB is 76% after five cycles. 重庆市基础与前沿研究计划重点项目(CSTC,2015jcyjBX0015)

References

[1]  BENHAMED I, BARTHE L, KESSAS R, et al. Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation[J]. Applied Catalysis B:Environmental, 2016, 187:228-237.
[2]  姜泳波, 赵慧宏, 马婷婷, 等. 高级催化氧化法降解甲基橙模拟废水研究[J]. 环境科学与技术, 2014, 37(2):57-60. JIANG Yongbo, ZHAO Huihong, MA Tingting, et al. Methyl orange degradation by advanced catalytic oxidation method[J]. Environmental Science & Technology, 2014, 37(2):57-60(in Chinese).
[3]  SCHMIT F, BOIS L, CHASSAGNEUX F, et al. Catalytic wet air oxidation of methylamine over supported manganese dioxide catalysts[J]. Catalysis Today, 2015, 258:570-575.
[4]  张红艳, 陆雪梅, 刘志英, 等. 湿式氧化法处理高盐度难降解农药废水[J]. 化工进展, 2007, 26(3):417-421, 425. ZHANG Hongyan, LU Xuemei, LIU Zhiying, et al. Treatment of degradation-resistant pesticide wastewater with high salinity by wet air oxidation[J]. Chemical Industry and Engineering Progress, 2007, 26(3):417-421, 425(in Chinese).
[5]  GALEANO L A, GIL A, VICENTE M A. Strategies for immobilization of manganese on expanded natural clays:Catalytic activity in the CWPO of methyl orange[J]. Applied Catalysis B:Environmental, 2011, 104(3-4):252-260.
[6]  钮娜, 董学伟, 董晓丽, 等. 催化湿式过氧化氢氧化法处理甲基橙[J]. 大连工业大学学报, 2011, 30(1):62-64. NIU Na, DONG Xuewei, DONG Xiaoli, et al. The treatment of Acid Orange 52 by catalytic wet peroxide oxidation[J]. Journal of Dalian Polytechnic University, 2011, 30(1):62-64(in Chinese).
[7]  WANG G S, LEE J W, SANG C K. Analysis of catalytic oxidation of aromatic hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties[J]. Applied Catalysis B:Environmental, 2008, 84(1-2):133-141.
[8]  DAS D P, PARIDA K M. Mn(Ⅲ) oxide pillared titanium phosphate (TiP) for catalytic deep oxidation of VOCs[J]. Applied Catalysis A:General, 2007, 324:1-8.
[9]  崔丽华, 王岩, 舒霞, 等. MnO2/TiO2 复合物电极的制备及超级电容性能[J]. 复合材料学报, 2016, 33(8):1794-1802. CUI Lihua, WANG Yan, SHU Xia, et al. Preparation and supercapacitive performance of MnO2/TiO2 composite electrodes[J]. Acta Materiae Compositae Sinica, 2016, 33(8):1794-1802(in Chinese).
[10]  李洁, 姚超, 张珊, 等. δ型二氧化锰/埃洛石的制备及其对亚甲基蓝的吸附性能[J]. 硅酸盐学报, 2014, 42(2):241-247. LI Jie, YAO Chao, ZHANG Shan, et al. Preparation of δ-type manganese dioxide/halloysite composites and their adsorption properties for methylene blue[J]. Journal of the Chinese Ceramic Society, 2014, 42(2):241-247(in Chinese).
[11]  GALEANO L A, GIL A, VICENTE M A. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu-and Al/(Fe-Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange[J]. Applied Catalysis B:Environmental, 2010, 100(1-2):271-281.
[12]  杨永珍, 刘伟峰, 郭明聪, 等. MnO2/CMSs复合材料的制备及其电化学性能[J]. 复合材料学报, 2011, 28(4):149-155. YANG Yongzhen, LIU Weifeng, Guo Mingcong, et al. Preparation and electrochemical property of MnO2/carbon microsphere composite[J]. Acta Materiae Compositae Sinica, 2011, 28(4):149-155(in Chinese).
[13]  冯林强, 罗汉金, 方伟. 纳米二氧化锰/还原态氧化石墨烯复合材料催化臭氧降解苯酚的研究[J]. 环境工程, 2016, 34(7):56-60. FENG Linqiang, LUO Hanjin, FANG Wei. Study on catalytic ozonation of phenol over nanosized MnO2 supported on reduced graphene oxide[J]. Environmental Engineering, 2016, 34(7):56-60(in Chinese).
[14]  FENG Shan, XU Longjun, LIU Chenglun, et al. Preparation and property of magnetic photocatalyst BiOCl/MnxZn1-xFe2O4[J]. The Journal of Nanoparticle Research, 2017, 19(2):33.
[15]  YANG Ruizhi, WANG Zhaoxiang, DAI Lei, et al. Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH[J]. Materials Chemistry & Physics, 2005, 93(1):149-153.
[16]  PU Y C, CHEN Y C, HSU Y J. Au-decorated NaxH2-x Ti3O7 nanobelts exhibiting remarkable photocatalytic properties under visible-light illumination[J]. Applied Catalysis B:Environmental, 2010, 97(3):389-397.
[17]  SUAREZ-OJEDA M E, STVBER F, FORTUNY A, et al. Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst[J]. Applied Catalysis B:Environmental, 2005, 58(1):105-114.
[18]  王建兵, 杨少霞, 祝万鹏, 等. 催化湿式氧化法处理废水的研究进展[J]. 化工环保, 2007, 27(4):295-300. WANG Jianbing, YANG Shaoxia, ZHU Wanpeng, et al. Advances in research on wastewater treatment by catalytic wet air oxidation process[J]. Environmental Protection of Chemical Industry, 2007, 27(4):295-300(in Chinese).
[19]  蔡先明, 秦侠, 张丽, 等. 催化湿式过氧化氢氧化处理垃圾渗滤液及其DOM光谱分析[J]. 环境科学学报, 2015, 35(9):2930-2935. CAI Xianming, QIN Xia, ZHANG Li, et al. Hydrogen peroxide catalytic wet oxidation of leachate and the spectroscopic analysis of dissolved organic matters[J]. Acta Scientiae Circumstantiae, 2015, 35(9):2930-2935(in Chinese).
[20]  彭爱国, 贺周初, 肖伟, 等. 化学二氧化锰研究进展[J]. 无机盐工业, 2011, 43(3):8-10, 30. PENG Aiguo, HE Zhouchu, XIAO Wei, et al. Research progress of chemical manganese dioxide[J]. Inorganic Chemicals Industry, 2011, 43(3):8-10, 30(in Chinese).
[21]  彭轶瑶, 陶娟, 冯靖雯, 等. 微波诱导催化氧化六方软锰矿降解四环素[J]. 人工晶体学报, 2014, 43(7):1651-1656. PENG Yiyao, TAO Juan, FENG Jingwen, et al. Degradation of tetracycline in water by microwave induced catalytic oxidation of akhtenskite[J]. Journal of Synthetic Crystals, 2014, 43(7):1651-1656(in Chinese).
[22]  ZHANG Zhaodi, XU Longjun, LIU Chenglun, et al. Pre-paration and characterization of composite magnetic photo-catalyst MnxZn1-xFe2O4/β-Bi2O3[J]. The Royal Society of Chemistry, 2015, 5(97):79997-80004.
[23]  JIE L, ZHAO Z, SHAO P, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262(9):854-861.
[24]  刘建武, 郭成, 黄海亮, 等. 柠檬酸溶胶-凝胶法制备钡铁氧体晶相变化的研究[J]. 南京工业大学学报(自然科学版), 2017, 39(1):26-30. LIU Jianwu, GUO Cheng, HUANG Hailiang, et al. Crystal change of barium hexaferrite prepared by citric acid sol-gel method[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2017, 39(1):26-30(in Chinese).
[25]  YU C, LI G, WEI L, et al. Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration[J]. Catalysis Today, 2014, 224(224):154-162.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133