|
- 2016
SCE-SiO2/PES-MBAE复合材料微观形貌及性能
|
Abstract:
为研究增韧双马来酰亚胺方法及其对性能的影响,首先利用超临界乙醇处理纳米SiO2(SCE-SiO2),改善其表面活性;然后以4,4'-二氨基二苯甲烷双马来酰亚胺(MBMI)、3,3'-二烯丙基双酚A (BBA)、双酚A双烯丙基醚(BBE)为原料合成了MBMI-BBA-BBE (MBAE)复合材料基体,并利用原位聚合法和溶胶-凝胶法将SCE-SiO2和聚醚砜(PES)加入MBAE基体中制备了SCE-SiO2/PES-MBAE多相复合材料;最后采用SEM观察了SCE-SiO2/PES-MBAE复合材料断面形貌。SCE-SiO2的FTIR分析结果表明:在3 434 cm-1处的Si—OH的吸收峰消失,出现了3 310 cm-1处的乙醇分子间—OH的吸收峰、2 984 cm-1处的甲基和亚甲基的吸收峰,证明纳米粒子可能以某种形式结合了乙醇分子,改善了表面性能。PES以"蜂窝"状分散相的形式存在于基体中,断裂方式由脆性断裂向韧性断裂转变,SCE-SiO2和PES对材料均有增韧作用,PES的增韧效果更明显,二者之间具有协同作用,当SCE-SiO2含量为2wt% 、PES含量为4wt%时,多相复合材料的冲击强度和弯曲强度分别为15.02 kJ/m2和130.47 MPa,较MBAE树脂分别提高了57.3%和35.8%。介电性能测试表明:SCE-SiO2和PES的引入均会导致SCE-SiO2/PES-MBAE复合材料的介电常数和损耗略有上升,但二者之间的协同作用可以抑制PES组分所带来的负面影响。 In order to research the method of toughening bismaleimide and its effects on properties, nano-SiO2 was modified by supercritical ethanol (SCE-SiO2), and its surface activity of SCE-SiO2 were improved, 4,4'-diamino diphenyl methane bismaleimide (MBMI), 3,3'- diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE) were used to synthesize MBAE(MBMI-BBA-BBE) composite matrix, SCE-SiO2/PES-MBAE multi-phase composite was prepared from adding SCE-SiO2 and polyether sulfone (PES) into MBAE matrix by in-situ polymerization method and sol-gel method. SEM was used to observe the fracture morphology of SCE-SiO2/PES-MBAE composites. The analysis result of FTIR shows that the absorption peak of Si—OH at 3 434 cm-1 disappeares and the absorption peaks of —OH between ethanol molecules (3 310 cm-1), —CH3 and —CH2— (2 984 cm-1)appeares, this indicates the nano particle is coated with ethanol molecule in some form and surface properties improve. PES exists in the matrix as dispersed phase in the form of "honeycomb", the fracture modes transform from brittle fracture to ductile fracture. SCE-SiO2 and PES have the toughing effect to the material, the toughing effect of PES are extremely obvious, and there are synergistic between them. When the content of SCE-SiO2 is 2wt%, PES content is 4wt%, the impact strength and the bending strength of multi-phase composites are 15.02 kJ/m2 and 130.47 MPa, enhance 57.3% and 35.8% than that of MBAE matrix, respectively. The dielectric property test shows that the dielectric constant and dielectric loss of SCE-SiO2/PES-MBAE composites show a little increase while SCE-SiO2 and PES exist, but the synergistic reaction between them can reduce the negative impacts of PES. 哈尔滨市科技局创新人才专项(2015RAXXJ029)
[1] | 罗甜. 二烯丙基双酚A改性双马来酰亚胺耐高温胶黏剂研究[D]. 武汉: 武汉理工大学, 2010. LUO T. Study on diallyl bisphenol a modify BMI high temperature resistance adhesive[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). |
[2] | 胡利红. 双马来酰亚胺树脂的增韧改性研究[D]. 南昌: 南昌航空大学. 2012. HU L H. Study on the toughening modification of bismaleimide resin[D]. Nanchang: Nanchang Aviation University, 2012 (in Chinese). |
[3] | 孟涛, 李玲, 董风云. 双马来酰亚胺树脂的增韧改性研究[J]. 化学与黏合, 2005, 27(1): 43-46. MENG T, LI L, DONG F Y. Toughened bismalei-mide resin modified[J]. Chemistry and Adhesion, 2005, 27(1): 43-46 (in Chinese). |
[4] | 田付强, 杨春, 何丽娟. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. TIAN F Q, YANG C, HE L J. Recent research advancement in dielectric properties and corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12 (in Chinese). |
[5] | 单薇, 廖明义. 纳米SiO2的表面处理及其在聚合物基纳米复合材料中的应用进展[J]. 高分子通报, 2006(3): 1-9. SAN W, LIAO M Y. Nano-SiO2 surface treatment and its application in polymer nanocomposites[J]. Polymer Bulletin, 2006(3): 1-9 (in Chinese). |
[6] | 陈宇飞, 代起望, 滕成君. 超临界氧化铝/聚醚砜-双马来酰亚胺复合材料的微观结构与耐热性[J]. 复合材料学报, 2015, 32(3): 665-672. CHEN Y F, DAI Q W, TENG C J. Microstructure and heat-resistance of SCE-Al2O3/PES-MBAE composite[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 665-672 (in Chinese). |
[7] | 中国机械电子工业. 固体绝缘材料在工频、音频、高频下相对介电常数的介质损耗因数的试验方法: GB 1409—89[S]. 北京: 中国标准出版社, 1988. Machinery and Electronics Industry Bureau of China. Methods for the determination of the permittivity and dielectric dissipation factor of solid electrical insulating materials at power, audio and radio frequency: GB 1409—89[S]. Beijing: Standards Press of China, 1988 (in Chinese). |
[8] | 周彤辉, 阮文红, 王跃林. 原位接枝改性纳米二氧化硅/聚丙烯复合材料Ⅰ: 结构表征[J]. 复合材料学报, 2006, 23(2): 71-76. ZHOU T H, RUAN W H, WANG Y L. Polypropylene composites with nano-silica modified by in-situ grafting polymerization I: Structure characterization[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 71-76 (in Chinese). |
[9] | 宫大军, 郁杰, 金双华. 双马来酰亚胺增韧改性的研究进展[J]. 绝缘材料, 2011, 44(1): 41-46. GONG D J, YU J, JIN S H. Development of bis-maleimide toughening modification of bis-maleimide resin[J]. Insulation Materials, 2011, 44(1): 41-46 (in Chinese). |
[10] | TAKEICHI T, UCHIDA S, INOUE Y, et al. Preparation and properties of polymer alloys consisting of high-molecular-weight benzoxazine and bismaleimide[J]. High Performance Polymers, 2014, 26(3): 265-273. |
[11] | 程雷, 王汝敏, 王小建. 烯丙基化合物改性双马来酰亚胺树脂的研究进展[J]. 中国胶粘剂, 2009, 18(4): 58-63. CHENG L, WANG R M, WANG X J. Research progress of bismaleimide resin modified by allyl compounds[J]. China Adhesives, 2009, 18(4): 58-63 (in Chinese). |
[12] | 雷勇, 荆晓东, 江璐霞. 橡胶增韧双马来酰亚胺树脂的研究[J]. 化工新型材料, 2001, 29(2): 26-28. LEI Y, JING X D, JIANG L X. Study on rubber toughened bismaleimide resins[J]. Chemical New Materials, 2001, 29(2): 26-28 (in Chinese). |
[13] | 罗杨, 吴广宁, 彭佳. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9): 2455-2464. LUO Y, WU G N, PENG J. Research progress on interfacial properties of polymer nano-dielectrics[J]. High Voltage Engineering, 2012, 38(9): 2455-2464 (in Chinese). |
[14] | 北京玻钢院复合材料有限公司. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008. Beijing FRP Research Institute of Composite Materials Co. LTD,. The test methods for properties of resin casting body: GB/T 2567—2008[S]. Beijing: Standards Press of China, 2008 (in Chinese). |
[15] | SELVAGANAPATHI A, ALAGAR M, GNANASUNDARAM P. Studies on synthesis and characterization of hydroxyl-terminated poly-dimethylsiloxane-modified epoxy bismaleimide matrices[J]. High Performance Polymers, 2013, 25(6): 622-633. |