|
- 2016
炭基复合材料与人骨的力学性能对比分析
|
Abstract:
选用3种炭基复合材料,分别为采用化学气相沉积(CVD)工艺和CVD/浸渍复合工艺制备的2种C/C复合材料以及采用CVD/熔融渗硅(MSI)工艺制备的C/C-SiC复合材料,通过对比分析3种炭基复合材料与人骨的微观结构和力学性能,研究了所选用的3种炭基复合材料作为新型骨折内固定材料的可行性。结果表明:3种炭基复合材料与人骨均具有纤维增强、多孔基体的微观结构形态。在力学性能方面,3种炭基复合材料的弹性模量与人骨都较为接近,其中C/C-SiC复合材料的力学性能与人骨最为接近,分别为弯曲强度213.0 MPa、剪切强度19.3 MPa、压缩强度228.1 MPa,有望成为理想的接骨板材料。CVD和CVD/浸渍工艺制备的C/C复合材料,弯曲强度分别仅为161.8 MPa和174.6 MPa,低于人骨的弯曲强度,后期可通过改进坯体结构和制备工艺等方法来使其力学性能与人骨相匹配。 Three kinds of carbon matrix composites (chemical vapor deposition (CVD) prepared C/C composites, CVD/impregnation prepared C/C composites and CVD/molten silicon infiltration (MSI) prepared C/C-SiC composites, respectively) were chosen to study their potential application as new internal fixation materials. The microstructure and mechanical properties of three kinds of carbon matrix composites and human bone were analyzed.The results show that three kinds of carbon matrix composites and human bone have fiber reinforced porous matrix microstructure. As for mechanical property, the elastic modulus of three kinds of carbon matrix composites and human bone are highly similar. C/C-SiC composites is expected to be used as an ideal bone plate material since it has the closest mechanical property compared to human bone, for bending strength of 213.0 MPa, shear strength of 19.3 MPa and compressive strength of 228.1 MPa. Bending strength of C/C composites prepared by CVD and CVD/impregnation is 161.8 MPa and 174.6 MPa, respectively, which are lower than that of human bone. Mechanical properties of C/C composites can be improved by optimization of the preform structure and preparation process in the future. 国家“863”计划(2015AA033503)
[1] | 曹宁, 陈华英, 薛成骞, 等. 医用C/C复合材料组织结构与应变率效应[J]. 复合材料学报, 2008, 25(6):130-135. CAO N, CHEN H Y, XUE C Q, et al. Structures and strain rate effect of biomedical C/C composites[J]. Acta Materiae Compositae Sinica, 2008, 25(6):130-135(in Chinese). |
[2] | LEWANDOWSKA-SZUMIE? M, KOMENDER J, GORECKI A, et al. Fixation of carbon fibre-reinforced carbon composite implanted into bone[J]. Journal of Materials Science:Materials in Medicine, 1997, 8(8):485-488. |
[3] | CZAJKOWSKA B, B?A?EWICZ M. Phagocytosis of chemically modified carbon materials[J]. Biomaterials, 1997, 18(1):69-74. |
[4] | 方铁钧, 周群, 狄丽莎, 等. 碳纤维增强碳与碳化硅双基体陶瓷基复合材料作为口腔种植体材料的细胞毒性[J]. 中国医科大学学报, 2011, 40(5):417-21. FANG T J, ZHOU Q, DI L S, et al. Cytotoxicity of carbon fiber reinforced C/C-SiC binary matrix composite(C/C-SiC)for dental implant materials[J]. Journal of China Medical University, 2011, 40(5):417-421(in Chinese). |
[5] | RAVELINGIEN M, HERVENT A, MULLENS S, et al. Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition[J]. Applied Surface Science. 2010, 256(11):3693-3697. |
[6] | MERLE C, STREIT M R, VOLZ C, et al. Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty:A DXA study at 12 and 17 years[J]. Osteoporosis International, 2011, 22(11):2879-2886. |
[7] | LI X, FENG Y F, WANG C T, et al. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo[J]. Plos One, 2012, 7(12):1-17. |
[8] | 杨红艳. CF/PEEK骨板固定效果和骨板设计依据的研究[D]. 西安:西北工业大学, 2007. YANG H Y. Study on healing effects of CF/PEEK bone plate and the design principle of bone plate[D]. Xi'an:Northwestern Polytechnical University, 2007(in Chinese). |
[9] | RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11):817-822. |
[10] | 周海宇, 李元超, 王成焘. 关节软骨胶原纤维增强特性[J]. 医用生物力学, 2013, 28(4):460-465. ZHOU H Y, LI Y C, WANG C T. Reinforcement property of collagen fibril in articular cartilage[J]. Journal of Medical Biomechanics, 2013, 28(4):460-465(in Chinese). |
[11] | 张智凌. 密质骨多级微结构的强韧机理[D]. 重庆:重庆大学, 2014. ZHANG Z L. Mechanism of strength and toughness of hierarchical microstructure of cortical bone[D]. Chongqing:Chongqing University, 2014(in Chinese). |
[12] | WANG G H, YU S, ZHU S H, et al. Biological properties of carbon/carbon implant composites with unique manufacturing processes[J]. Journal of Materials Science:Materials in Medicine, 2009, 20(12):2487-2492. |
[13] | HOWLING G, INGHAM E, SAKODA H, et al. Carbon-carbon composite bearing materials in hip arthroplasty:Analysis of wear and biological response to wear debris[J]. Journal of Materials Science:Materials in Medicine, 2004, 15(1):91-98. |
[14] | KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491. |
[15] | 汪海滨, 张卫红, 杨军刚, 等. 考虑孔隙和微裂纹缺陷的C/C-SiC编织复合材料等效模量计算[J]. 复合材料学报, 2008, 25(3):182-189. WANG H B, ZHANG W H, YANG J G, et al. Numerical computing of effective modulus of woven C/C-SiC composites including porosities and micro-cracks[J]. Acta Materiae Compositae Sinica, 2008, 25(3):182-189(in Chinese). |
[16] | 张晓虎, 李崇俊. 致密工艺对炭布增中2D-C/C复合材料力学性能的影响[J]. 新型炭材料, 2001, 16(4):36-39. ZHANG X H, LI C J. Effect of compact process on mechanical performances of carbon cloth enhanced 2D-C/C composites[J]. New Carbon materials, 2001, 16(4):36-39(in Chinese). |
[17] | 李江鸿, 熊翔, 张红波, 等. 纤维体积分数对炭/炭复合材料力学性能的影响[J]. 中南大学学报(自然科学版), 2005, 36(3):375-379. LI J H, XIONG X, ZHANG H B, et al. Effect of fiber volume fraction on mechanical performances of C/C composites[J]. Journal of Central South University(Science and Technology), 2005, 36(3):375-379(in Chinese). |
[18] | 韩帅, 段跃新, 李超, 等. 不同针织结构经编碳纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5):52-57. HAN S, DUAN Y X, LI C, et al. Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patterns[J]. Acta Materiae Compositae Sinica, 2011, 28(5):52-57(in Chinese). |