全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

弹塑性多尺度分析的实现及其在颗粒增强复合材料中的应用
Implementation of elastic-plastic multi-scale analysis and application in particle reinforced composites

DOI: 10.13801/j.cnki.fhclxb.20161202.003

Keywords: 颗粒增强复合材料,渐近展开,均匀化方法,非线性多尺度分析,代表性单元体,周期性边界条件
particle reinforced composites
,asymptotic expansions,homogenization method,nonlinear multi-scale analysis,representative element volume,periodic boundary conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  OLIVEIRA J A, PINHO-DA-CRUZ J, TEIXEIRA-DIAS F. Asymptotic homogenisation in linear elasticity. Part Ⅱ:Finite element procedures and multiscale applications[J]. Computational Materials Science, 2009, 45(4):1081-1096.
[2]  YANG C H, HUH H, HAHN H T. Investigation of effective material properties in composites with internal defect or reinforcement particles[J]. International Journal of Solids and Structures, 2005, 42(24-25):6141-6165.
[3]  SEGURADO J, LLORCA J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(10):2107-2121.
[4]  KARI S, BERGER H, RODRIGUEZ-RAMOS R, et al. Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles[J]. Composite Structures, 2007, 77(2):223-231.
[5]  马昌兵, 强洪夫, 武文明, 等. 颗粒增强复合材料有效弹性模量预测的多步法[J]. 固体力学学报, 2010, 31(s1):12-16. MA C P, QIANG H F, WU W M, et al. Multi-step method for effective elastic properties prediction of composite material[J]. Journal of the Mechanics and Physics of Solids, 2010, 31(s1):12-16(in Chinese).
[6]  MORI T, TANAKA K. Average stress in the matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5):571-574.
[7]  HILL R. A self consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4):213-222.
[8]  TORQUATO S. Effective stiffness tensor of composite media:Ⅱ. Applications to isotropic dispersions[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8):1411-1440.
[9]  PINHO-DA-CRUZ J, OLIVEIRA J A, TEIXEIRA-DIAS F. Asymptotic homogenisation in linear elasticity. Part I:Mathematical formulation and finite element modelling[J]. Computational Materials Science, 2009, 45(4):1073-1080.
[10]  KANOUTE P, BOSO D P, CHABOCHE J L, et al. Multiscale methods for composites:A review[J]. Archives of Computational Methods in Engineering, 2009, 16(1):31-75.
[11]  YUAN Z, FISH J. Towards realization of computational homogenization in practice[J]. International Journal for Numerical Methods in Engineering, 2008, 73(3):361-380.
[12]  FEYEL F, CHABOCHE J. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3-4):309-330.
[13]  KOUZNETSOVA V, GEERS M G D, BREKELMANS W A M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme[J]. International Journal for Numerical Methods in Engineering, 2002, 54(8):1235-1260.
[14]  杨晓东, 董泽民, 杨坤, 等. 颗粒增强复合材料弹性结构的双尺度有限元分析[J]. 机械工程学报, 2012, 48(8):34-38. YANG X D, DONG Z M, YANG K, et al. Two scale analysis of elastic structures of particle reinforced compositematerials with finite element method[J]. Journal of Mechanical Engineering, 2012, 48(8):34-38(in Chinese).
[15]  TCHALLA A, BELOUETTAR S, MAKRADI A, et al. An ABAQUS toolbox for multiscale finite element computation[J]. Composites Part B:Engineering, 2013, 52:323-333.
[16]  KOUZNETSOVA V G. Computational homogenization for the multi-scale analysis of multi-phase materials[D]. Eindhoven:Technische Universiteit Eindhoven, 2002.
[17]  XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2):266-278.
[18]  杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典型元件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3):617-624. YANGQ, XIE W H, MENG S H, et al.Multi-scale analysis method of composites and damage simulation of typical component under tensileload[J]. Acta Materiae Compositae Sinica, 2015, 32(3):617-624.
[19]  张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7):1636-1645. ZHANG C, XU X W, YAN X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1636-1645(in Chinese).
[20]  XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8):1907-1921.
[21]  YANG J H. Development about composite homogenization in static and in dynamic application to UD composite materials[D]. Nantes:Centrale Nantes, 2011.
[22]  谢桂兰. 聚合物基复合材料多尺度方法的研究[D]. 湘潭:湘潭大学, 2006. XIE G L. Study of multiscale methods for polymer matrix composites[D]. Xiangtan:Xiangtan University, 2006(in Chinese).
[23]  HIBBITTE K. ABAQUS user subroutines reference manual, version 6.12[R]. Providence:ABAQUS Inc., 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133