|
- 2017
混合氨-碱沉淀剂制备Ni(OH)2/还原氧化石墨烯复合材料及其电化学性能
|
Abstract:
利用简单易行的化学沉淀-回流法制备了Ni(OH)2/还原氧化石墨烯(RGO)复合材料,研究了不同混合氨-碱沉淀剂对复合材料电化学性能的影响。采用XRD、拉曼光谱(Raman)和SEM表征Ni(OH)2/RGO复合材料的微观结构和形貌。当以NH3·H2O-NaOH作为沉淀剂时,Ni(OH)2/RGO复合材料中β-Ni(OH)2纳米片均匀分散在石墨烯片层之间,形成相互插层结构。利用循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试了复合电极材料的电化学性能。研究结果表明:放电倍率为0.2 C时,Ni(OH)2/RGO复合电极材料的放电比容量达到344.8 mAh/g,比β-Ni(OH)2的放电比容量高出约29%;5 C时放电比容量为274.5 mAh/g,经过50个循环,容量保持率为98.8%,呈现出良好的倍率性能和循环性能。 Nickel hydroxide/reduced graphene oxide (Ni(OH)2/RGO) composites were synthesized by simple and practicable chemical precipitation-reflux method. The influence of different ammonia-alkali mixed precipitant on electrochemical performance of composite materials was researched. The microstructure and morphology of the Ni(OH)2/RGO composites were characterized by XRD, Raman spectra and SEM. The synthesized Ni(OH)2/RGO composite shows that β-Ni(OH)2 nano sheets are homogeneously dispersed and inserted into RGO sheets, thus mutually inserted structure is formed using ammonium hydroxide-sodium hydroxide as precipitant. The electrochemical characteristics of composite electrode materials were tested by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results show that the prepared Ni(OH)2/RGO composite exhibits a high discharge specific capacity of 344.8 mAh/g at 0.2 C rate, and is 29% higher than the specific capacity of β-Ni(OH)2. The discharge specific capacity of the β-Ni(OH)2/RGO composite is 274.5 mAh/g at 5 C rate. Moreover, 98.8% of the initial specific capacity of the composite is maintained after 50 cycle test. Ni(OH)2/RGO composite displays a better rate capability and cycle performance as electrode material. 内蒙古青年科技英才计划(NJYT-14-A08);内蒙古自然科学基金(2014MS0523;2015MS0208);包头市科技计划(2015C2004-1)
[1] | 唐有根, 李文良. 镍氢电池[M]. 北京:化学工业出版社, 2007:12-15. TANG Y G, LI W L. Ni/MH batteries[M]. Beijing: Chemical Industry Press, 2007: 12-15 (in Chinese). |
[2] | TANIGUCHI A, FUJIOKA N, IKOMA M, et al. Development of nickel/metal-hydride batteries for EVs and HEVs[J]. Journal of Power Sources, 2001, 100(1-2): 117-124. |
[3] | 于丽敏, 蒋文全, 傅钟臻, 等. 镍氢动力电池正极材料的研究[J]. 材料导报, 2011, 25(9): 58-62. YU L M, JIANG W Q, FU Z Z, et al. Research on the cathode materials of Ni/MH power batteries[J]. Materials Review, 2011, 25(9): 58-62 (in Chinese). |
[4] | STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
[5] | MA X W, LIU J W, LIANG C Y, et al. A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH)2/GO/CNTs composite with excellent supercapacitor performance[J]. Journal of Materials Chemistry A, 2014, 2(32): 12692-12696. |
[6] | ZHENG C H, LIU X, CHEN Z D, et al. Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route[J]. Journal of Central South University, 2014, 21(7): 2596-2603. |
[7] | 范艳煌, 邹正光, 龙飞, 等. 以氧化石墨烯为氧化介质制备石墨烯/聚苯胺导电复合材料[J]. 复合材料学报, 2013, 30(01): 27-31. FAN Y H, ZOU Z G, LONG F, et al. Preparation of graphene/polyaniline conducting composite by graphene oxide for oxidant[J]. Acta Materiae Compositae Sinica, 2013, 30(01): 27-31 (in Chinese). |
[8] | 陈阳, 张梓澜, 隋志军, 等. 氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J]. 物理化学学报, 2015(06): 1105-1112. CHEN Y, ZHANG Z L, SUI Z J, et al. Preparation and electrochemical performance of Ni(OH)2 nanowires/three-dimensional graphene composite materials[J].Acta Physico-Chimica Sinica, 2015(06): 1105-1112 (in Chinese). |
[9] | LI T, MA G, SUN H. Ammonia-alkali soution coordination-precipitation route for preparation of β-ni(oh)2 nano-particles[J]. Rare Metal Materials & Engineering, 2014, 43(3): 563-566. |
[10] | ZHOU G T, YAO Q Z, WANG X, et al. Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide[J]. Materials Chemistry & Physics, 2006, 98(2-3): 267-272. |
[11] | 傅小明, 孙浩, 王幸福, 等. 水热法合成β型氢氧化镍纳米片及其生长机理[J]. 无机盐工业, 2011, 43 (11): 34-36. FU X M, SUN H, WANG X F, et al. Synthesis of β-Ni(OH)2 nanoplates by hydrothermal methodand formation mechanism thereof[J]. Inorganic Chemicals Industry, 2011, 43(11): 34-36 (in Chinese). |
[12] | FANG D L, CHEN Z D, LIU X, et al. Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors[J]. Electrochimica Acta, 2012, 81: 321-329. |
[13] | SHENG K X, XU Y X, LI C, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Materials, 2011, 26(1): 9-15. |
[14] | WANG Y, ZHU Q, ZHANG H. Fabrication of beta-Ni(OH)2 and NiO hollow spheres by a facile template-free process[J]. Chemical Communications, 2005, 41(41): 5231-5233. |
[15] | CHEN X A, CHEN X H, ZHANG F Q, et al. One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2, compositesfor high performance electrochemical supercapacitor[J]. Journal of Power Sources, 2013, 243: 555-561. |
[16] | KIM J, KIM Y, PARK S J, et al. Preparation and electro-chemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes[J]. Journal of Industrial & Engineering Chemistry, 2016, 36: 139-146. |
[17] | KIM Y, KIM S. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites[J]. Electrochimica Acta, 2015, 163: 252-259. |
[18] | XU M W, BAO S H, LI H L. Synthesis and characteriza-tion of mesoporous nickel oxide for electrochemical capacitor[J]. Journal of Solid State Electrochemistry, 2007, 11(3): 372-377. |
[19] | SHUANG D, DAO A Q, ZHENG B, et al. One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel-cobalt hydroxides nanoflakes and its electrochemical properties[J]. Electrochimica Acta, 2014, 152: 195-201. |
[20] | KIM Y, CHO E S, PARK S J, et al. One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior[J]. Journal of Industrial & Engineering Chemistry, 2016, 33: 108-114. |
[21] | JI J, ZHANG L L, JI H, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS Nano, 2013, 7(7): 6237-6243. |
[22] | YAN J, FAN Z, WEIS, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density[J]. Advanced Functional Materials, 2012, 22(12): 2632-2641. |
[23] | 顾善群, 李金焕, 王海洋, 等. 石墨烯/纳米银复合材料的制备、微结构及其导电性能[J]. 复合材料学报, 2015, 32(4): 1061-1066. GU S Q, LI J H, WANG H Y, et al. Preparation of graphene/nano-Ag composite, microstructure and electrical property[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1061-1066 (in Chinese). |
[24] | YUAN B, ZHENG X Y, ZHANG C, et al. Assembly of Ni(OH)2-graphene hybrids with ahigh electrochemical performance by a one-pothydrothermal method[J]. New Carbon Materials, 2014, 29(6): 426-431. |
[25] | HUMMERS W, OFFEMAN R. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80: 1339. |
[26] | MIN S, ZHAO C J, CHEN G R, et al. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2, films on nickel foam for high performance supercapacitors[J]. Electrochimica Acta, 2014, 115(3): 155-164. |