|
- 2017
后处理工艺对POSS-PMMA8改性凝胶聚合物电解质性能的影响
|
Abstract:
为解决凝胶聚合物电解质(GPE)的离子电导率低、力学性能差等问题,通过静电纺丝制备星型笼型低聚倍半硅氧烷-聚甲基丙烯酸甲酯(POSS-PMMA8)改性聚甲基丙烯酸甲酯-聚丙烯腈-聚偏氟乙烯(PMMA-PAN-PVDF)得到聚合物纺丝薄膜(POSS-PMMA8/PMMA-PAN-PVDF)M1,将聚合物纺丝薄膜M1在120℃热处理得到聚合物纺丝薄膜M2,或热压并预氧化处理得到聚合物纺丝薄膜M3,将其浸泡于电解液中活化得到POSS-PMMA8/PMMA-PAN-PVDF的GPE。对不同状态聚合物纺丝薄膜M1、M2、M3的形貌、孔隙率、吸液率、力学性能及其GPE的电导率和电化学稳定窗口进行测试。结果发现,相比于M1,M2的拉伸强度及GPE的电导率分别提高9.2%及181.1%,电化学窗口增至5.3 V;而M3的拉伸强度和GPE电导率分别较M1增加193.7%、20.2%,电化学窗口增至5.5 V。 To improve the ion conductivity and tensile strength of gel polymer electrolyte (GPE), a novel star-shaped polyhedral oligomericsilsesquioxane-polymethyl methacrylate (POSS-PMMA8) was successfully synthetized and introduced to the polymethyl methacrylate/polyacrylonitrile/polyvinylidene fluoride (PMMA-PAN-PVDF) matrix to obtain fibrous membrane M1 (POSS-PMMA8/PMMA-PAN-PVDF) by electrospinning. Membrane M1 was annealed at 120 ℃ to get membrane M2, or processed by hotpressing and pre-oxidizing to get membrane M3. Then the corresponding activated GPEs were prepared by soaking M1, M2 and M3 in liquid electrolyte. The morphologies, porosity, electrolyte uptake, and mechanical properties of these membranes (M1, M2 and M3), as well as the ion conductivity and electrochemical stability of their corresponding GPEs were fully investigated. The results show that, compared to M1, the tensile strength of M2 and ion conductivity of its GPE increase by 9.2% and 181.1%, respectively, and the electrochemical window of M2 and its GPE increases to 5.3 V; besides, the tensile strength of M3 and ion conductivity of its GPE increase by 193.7% and 20.2%, respectively, and the electrochemical window of M3 and its GPE increases to 5.5 V. 陕西省科技统筹创新工程计划(2016KTZDGY10-01);陕西省自然科学基金(2013JM2012);西北工业大学研究生创新创意种子基金重点项目(Z2016035)
[1] | ANGULAKSHMI N, STEPHAN A M. Electrospun trilayer polymeric membranes as separator for lithium-ion batteries[J]. Electrochimica Acta, 2014, 127: 167-172. |
[2] | 邱玮丽, 杨清河, 马晓华, 等. 纳米复合聚合物电解质的新型制备方法及其性能[J]. 复合材料学报, 2005, 22(2): 16-20. QIU W L, YANG Q H, MA X H, et al. Novel preparation and properties of nanocomposite polymer electrolytes[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 16-20. |
[3] | KANG W M, MA X M, ZHAO H H, et al. Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2016, 20(10): 2791-2803. |
[4] | 戴潇燕, 潘春跃, 冯庆, 等. 原位复合法制备TiO2/(PEO)8 LiClO4聚合物电解质[J]. 复合材料学报, 2006, 23(05): 75-78. DAIX Y, PAN C Y, FENG Q, et al.TiO2/(PEO)8 LiClO4 composite polymer electrolytes prepared by in-situ method[J]. Acta Materiae Compositae Sinica, 2006, 23(05): 75-78 (in Chinese). |
[5] | XIAO W, MIAO C, YAN X M, et al. Effect of various electrophoretically deposited nano-silica contents on the properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based electrospun polymer electrolytes[J]. Polymer International, 2016, 65 (2): 224-230. |
[6] | 韩坤明, 鲁道荣. 纳米SiO2/LiClO4/PVDF-HFP复合凝胶聚合物电解质的制备及其电化学性能[J]. 复合材料学报, 2008, 25(3): 57-62. HAN K M, LU D R. Electrochemical performances and preparation of nano-SiO2/LiClO4/PVDF-HFP composite gel polymer electrolyte[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 57-62 (in Chinese). |
[7] | ARAVINDAN V, SUNDARAMURTHY J, KUMAR P S, et al. Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries[J]. Chemical Communications, 2015, 51(12): 2225-2234. |
[8] | LIANG Y Z, CHENG S C, ZHAO J M, et al. Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 204-211. |
[9] | WOO J C, YOUK J H, KIM D S, et al. Heating effect on physical and electrochemical properties of nanofibrous polyacrylonitrile separator for lithium batteries[J]. Journal of Nanoscience and Nanotechnology, 2014, 14 (12): 9232-9236. |
[10] | ZHANG F, MA X L, CAO C B, et al. Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries[J]. Journal of Power Sources, 2014, 251: 423-431. |
[11] | NA H N, LI Q Y, SUN H, et al. Anisotropic mechanical properties of hot-pressed PVDF membranes with higher fiber alignments via electrospinning[J]. Polymer Engineering & Science, 2009, 49 (7): 1291-1298. |
[12] | HUANG Y, GONG S D, HUANG R, et al. Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix[J]. RSC Advances, 2015(5): 45908-45918. |
[13] | 张帆, 管兴华, 马晓燕, 等. POSS星型聚合物对PMMA复合凝胶聚合物电解质性能的影响[J]. 高分子学报, 2015(7): 852-857. ZHANG F, GUAN X H, MA X Y, et al. Effect of POSS star-shaped polymers on the properties of PMMA-based GPE[J]. Acta Polymeric Sinica, 2015(7): 852-857 (in Chinese). |
[14] | 张杰, 陈芳, 马晓燕, 等. 氧化石墨烯/笼型聚倍半硅氧烷星型嵌段共聚物复合质子交换膜的制备与性能[J]. 复合材料学报, 2016, 33(1): 92-99. ZHANG J, CHEN F, MA X F, et al. Preparation and pro-perties of graphene oxide/polyhedral oligomeric silsesquioxane star block copolymer blend proton exchange membrane[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 92-99 (in Chinese). |
[15] | DYARTANTI E R, PURWANTO A, WIDIASA I N, et al. Study on characteristics of pvdf/nano-clay composite polymer electrolyte using pvp as pore-forming agent[J]. AIP Con-ference Proceedings, 2016, 1710(1): 030008. |
[16] | LI X W, ZHANG Z X, YIN K, et al. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries[J]. Journal of Power Sources, 2015, 278: 128-132. |
[17] | HUANG F L, LIU W T, LI P Y, et al. Electrochemical properties of LLTO/fluoropolymer shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery[J]. Materials, 2016, 9(2): 75. |
[18] | PADMARAJ O, VENKATESWARLU M, SATYANARAYANA N. Effect of PMMA blend and ZnAl2O4 fillers on ionic conductivity and electrochemical performance of electrospun nanocomposite polymer blend fibrous electrolyte membranes for lithium batteries[J]. RSC Advances, 2016, 6(8): 6486-6495. |
[19] | ROGHANIZAD F, RAFIZADEH M. Ionic conductivity and interfacial resistance of electrospun poly(acrylonitrile)/poly(methyl methacrylate) fibrous membrane based polymer electrolytes for lithium ion batteries[J]. Ionics, 2015, 21(10): 2789-2795. |
[20] | LEE J H, MANUEL J, CHOI H, et al. Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries[J]. Polymer, 2015, 68: 335-343. |
[21] | YANILMAZ M, ZHANG X. Polymethyl methacrylate/polyacrylonitrile membranes via centrifugal spinning as separator in Li-ion batteries[J]. Polymers, 2015, 7(4): 629-643. |