全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

三种不同碳纤维的纳米压痕行为
Nano indentation behavior of three different types of carbon fibers

DOI: 10.13801/j.cnki.fhclxb.20160926.004

Keywords: 碳纤维,Raman光谱,纳米压痕,横向弹性模量,Weibull分布
carbon fiber
,Raman spectroscopy,nano indentation,transverse elastic modulus,Weibull distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Raman光谱对三种不同碳纤维(K223HE、HTA40和T700SC)的微晶尺寸进行了表征,利用纳米压痕技术对三种碳纤维的横向弹性模量和硬度进行了测试,结合Weibull分布函数对碳纤维的横向弹性模量和硬度进行统计分析。结果表明,中间相沥青基碳纤维K223HE的微晶长度最大,为39.43 nm±2.63 nm,PAN基碳纤维HTA40和T700SC的微晶尺寸基本相同,分别为4.63 nm±0.09 nm和4.89 nm±0.06 nm。在纳米压痕载荷-深度曲线上,碳纤维K223HE的残余变形大(75.34 nm±17.07 nm),压入功恢复率低(65.89%)。碳纤维HTA40、K223HE和T700SC的特征横向弹性模量为19.52 GPa、11.99 GPa和 17.92 GPa。三种碳纤维的横向弹性模量的Weibull分布模数分别为25.26、6.85和8.07,说明HTA40碳纤维的性能均匀性最好。碳纤维的纳米压痕行为的差异主要是由碳纤维中微晶的完整性、择优取向性的差异引起的。 The crystallite size of the three different carbon fibers (K223HE, HTA40 and T700SC) was characterized by Raman spectroscopy. The transverse elastic modulus and hardness of the carbon fibers were measured by nano indentation technique, and the data scatter was analyzed by two-parameter Weibull function. The results show that the crystallite length of the mesophase pitch based carbon fiber K223HE is the longest, about 39.43 nm±2.63 nm, and that of HTA40 and T700SC PAN based carbon fiber is almost the same, about 4.63 nm±0.09 nm and 4.89 nm±0.06 nm, respectively. In the nano indentation load-depth curve, the residual deformation of K223HE is the biggest (75.34 nm±17.07 nm), indicating the lowest recovery ratio of indentation work (65.89%). The characteristic transverse elastic modulus of the three carbon fibers is 19.52 GPa, 11.99 GPa and 17.92 GPa. The Weibull modulus of the transverse elastic modulus of the three different carbon fibers (HTA40, K223HE and T700SC) is 25.26, 6.85 and 8.07, which displays the consistence in the properties of HTA40 is the best. The differences in the nano indentation behavior of the three carbon fibers are attributed to the differences in the integrity and preferred orientation of the crystallite of carbon fibers. 中国科学院战略性先导科技专项(XDA02040400)

References

[1]  LEMOINE P, ZHAO J F, QUINN J P, et al. Nanoindentation and scratch resistance testing on magnetic tape heads coated with ultra-thin amorphous carbon layers[J]. Wear, 2000, 244(1-2): 79-84.
[2]  FIELD S, SWAIN M V. The indentation characterization of the mechanical properties of various carbon materials: Glassy carbon, coke and pyrolytic carbon[J]. Carbon, 1996, 34(11): 1357-1366.
[3]  Richter A, Ries R, Smith R, et al. Nanoindentation of diamond, graphite and fullerene films[J]. Diamond and Related Materials, 2000, 9(2): 170-184.
[4]  HAO M Y, LUO R Y, XIANG Q, et al. Effects of fiber type on the microstructure and mechanical properties of carbon/carbon composites[J]. New Carbon Material, 2014, 29(6): 444-453.
[5]  SARKAR S, DEY A, DAS P K, et al. Evaluation of micromechanical properties of carbon/carbon and carbon/carbon-silicon carbide composites at ultralow load[J]. Internation Journal of Appied Ceramic Technology, 2011, 8(2): 282-297.
[6]  MARX D T, RIESTER L. Mechanical properties of carbon-carbon composite components determined using nanoindentation[J]. Carbon, 1999, 37(11): 1679-1684.
[7]  WEI L M, ZHANG Y, XU C H, et al. Mechanical properties of 3D carbon/carbon composites by nanoindentation technique[J]. Journal of Central South University, 2012, 19(1): 36-40.
[8]  OZCAN S, TEZCAN J, FILIP P. Microstructure and elastic properties of individual components of C/C composites[J]. Carbon, 2009, 47(15): 3403-3414.
[9]  GROSS T S, TIMOSHCHUK N, TSUKROV I I, et al. On the ability of nanoindentation to measure anisotropic elastic constants of pyrolytic carbon[J]. Journal of Applied mathematics and Mechanics, 2013, 93(5): 301-312.
[10]  GROSS T S, TIMOSHCHUK N, TSUKROV I, et al. Unique nanoindentation damage for highly textured pyrolytic carbon[J]. Carbon, 2013, 51(60): 273-279.
[11]  周海浩, 李克智, 李贺军, 等. 循环加载周期对二维C/C复合材料弯曲强度的影响[J]. 复合材料学报, 2011, 28(2): 100-104. ZHOU Haihao, LI Kezhi, LI Hejun, et al. Effect of cycles on flexural fatigue strength for 2D C/C composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 100-104 (in Chinese).
[12]  唐玉玲, 泮世东, 周振功, 等. 含孔和切口C/C编织复合材料静态拉伸下的力学性能[J]. 复合材料学, 2013, 30(3): 87-93. TANG Yuling, PAN Shidong, ZHOU Zhengong, et al. Mechanical properties analysis of 3D C/C braided composite opening structures under static tension[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 87-93 (in Chinese).
[13]  梁军, 卢琦, 阚晋, 等. C/C复合材料液相浸渍制备工艺及其力学性能模拟[J]. 复合材料学报, 2011, 28(3): 159-167. LIANG Jun, LU Qi, KAN Jin, et al. Simulations of manufacturing process and mechanical properties of C/C compo-sites during liquid-phase impregnation manufacturing process[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 159-167 (in Chinese).
[14]  高波, 唐敏, 杨月城, 等. 4D轴编C/C复合材料力学性能实验研究[J]. 复合材料学报, 2011, 28(6): 245-252. GAO Bo, TANG Min, YANG Yuecheng, et al. Mechanical experiment of 4D in-plain C/C composite[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 245-252 (in Chinese).
[15]  LI X, BHUSHAN B. Micro/nano mechanical and tribological characterization of ultrathin amorphous carbon coatings[J]. Journal of Materials Research, 1999, 14(6): 2328-2337.
[16]  UMEMURA S, ANDOH Y, HIRONO S, et al. Nanoindentation and nanowear tests on amorphous carbon films[J]. Philosophical Magazine A, 1996, 74(5): 1143-1157.
[17]  KANARI M, TANAKA K, BABA S, et al. Nanoindentation behavior of a two-dimensional carbon-carbon composite for nuclear applications[J]. Carbon, 1997, 35(10): 1429-1437.
[18]  杨敏, 孙晋良, 任慕苏, 等. 热解碳的纳米硬度及弹性模量[J]. 上海大学学报(自然科学版), 2008, 14(5): 541-546. YANG Min, SUN Jinliang, REN Musu, et al. Nanohardness and elastic modulus of pyrocarbon[J]. Journal of Shanghai University (Natural Science), 2008, 14(5): 541-546 (in Chinese).
[19]  廖英强, 刘勇琼. 应用纳米压痕技术测试沥青炭的力学性能[J].材料导报: 研究篇, 2012, 26(3): 86-88. LIAO Yingqiang, LIU Yongqiong. Testing on mechanical property of pitch-based carbon based on nanoindentation technique[J]. Materials Review: Research, 2012, 26(3): 86-88 (in Chinese).
[20]  DISS P, LAMON J, CARPENTIER L, et al. Sharp indentation behavior of carbon/carbon composites and varieties of carbon[J]. Carbon, 2002, 40(14): 2567-2579.
[21]  MAURIN R, DAVIES P, BARAL N, et al. Transverse properties of carbon fibers by nanoindentation and micro-mechanics[J]. Applied Composite Materials, 2008, 15(2): 61-73.
[22]  HUSON M G, CHURCH J S, KAFI A A, et al. Heterogeneity of carbon fibre[J]. Carbon, 2014, 52(68): 240-249.
[23]  OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 564-1583.
[24]  TUINSTRA F, KOENING J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130.
[25]  BARSOUM M W, MURUGAIAH A, KALIDINDI S R, et al. Kink bands, nonlinear elasticity and nanoindentations in graphite[J]. Carbon, 2004, 42(8-9): 1435-1445.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133