全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

莫来石纤维增强SiO2气凝胶复合材料的力学性能试验
Mechanical property tests of mullite fiber-reinforced SiO2 aerogel composites

DOI: 10.13801/j.cnki.fhclxb.20160602.001

Keywords: 纤维增强SiO2气凝胶复合材料,数字图像相关法,拉伸性能,层间剪切性能,变形机制
fiber-reinforced SiO2 aerogel composites
,digital image correlation method,tensile properties,inter-laminar shear properties,deformation mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究莫来石纤维增强SiO2气凝胶复合材料的拉伸和层间剪切性能, 开展了相关试验。首先, 进行了复合材料在室温下的面内拉伸试验, 获得了复合材料的室温面内拉伸模量;然后, 采用引伸计方法和数字图像相关法分别对拉伸变形进行测量, 并对2种方法进行了对比分析;最后, 开展了不同温度下的层间剪切试验, 研究了复合材料在不同温度下的层间剪切性能, 并对其微观结构进行了分析。结果表明:复合材料的拉伸模量约为285.17 MPa;由引伸计方法测得的拉伸变形计算出的拉伸模量比数字图像相关法获得的拉伸模量高2.4%;在室温和高温下, 试样呈现明显的层间剪切破坏;对复合材料的微观分析发现, SiO2气凝胶基体主要分布在层间区域, 增强纤维主要分布在铺层内。所得结论表明莫来石纤维增强SiO2气凝胶复合材料拉伸和层间性能较差, 当承受层间载荷时, SiO2气凝胶基体起主要作用, 且温度对复合材料的性能影响较大。 In order to investigate the tensile and interlaminar shear properties of mullite fiber reinforced SiO2 aerogel composites, related tests were conducted. The in-plane tension tests of the composites were carried out at room temperature firstly, and the in-plane tensile modulus of the composite at room temperature was obtained. Then, the extensometer method and digital image correlation method were adopted respectively to measure the tensile deformations, and the two methods were compared and analyzed. Finally, the interlaminar shear tests at different temperatures were conducted, the interlaminar shear properties of the composites at different temperatures were investigated, and the microstructures were analyzed. The results show that the tension modulus of the composites is about 285.17 MPa. The tensile modulus calculated by the tensile deformation obtained by the extensometer method is 2.4% higher than the tensile modulus obtained by the digital image correlation method. The specimens present obvious interlaminar shear damage at room temperature and high temperature. The microscopic analyses on composites find that SiO2 aerogel matrix mainly distributes in interlaminar areas and reinforced fibers mainly distributes in plies. The conclusions obtained show that the tensile and interlaminar properties of mullite fiber reinforced SiO2 aerogel composites are relatively poor, SiO2 aerogel matrix plays a main role under interlaminar shear load, and temperature has a great influence on the properties of the composites. 国家自然科学基金(51275023)

References

[1]  American Society for Testing Material International. Standard test method interlaminar shear strength of 1-D and 2-D continuous fiber-reinforced advanced ceramics at elevated temperatures: ASTM C1425—13[S]. West Conshohocken: ASTM International, 2013.
[2]  米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3): 635-643. MI C H, JIANG Y G, SHI D Q, et al. Mechanical property test of ceramic fiber reinforced silica aerogel composite[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 635-643 (in Chinese).
[3]  何新波, 杨辉, 张长瑞, 等. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程学报, 2002, 20(2): 273-278. HE X B, YANG H, ZHANG C R, et al. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science & Engineering, 2002, 20(2): 273-278 (in Chinese).
[4]  SHI D Q, SUN Y T, FENG J, et al. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel[J]. Materials Science & Engineering: A, 2013, 585: 25-31.
[5]  高峰, 矫桂琼, 贾普荣, 等. 复合材料层间增韧机理的有限元分析[J]. 机械强度, 2007, 29(1): 63-66. GAO F, JIAO G Q, JIA P R, et al. Finite element analysis of toughening mechanism for interlayer-toughened composites[J]. Journal of Mechanical Strength, 2007, 29(1): 63-66 (in Chinese).
[6]  潘兵, 吴大方, 高镇同. 基于数字图像相关方法的非接触高温热变形测量系统[J]. 航空学报, 2010, 31(10): 1960-1967. PAN B, WU D F, GAO Z T. A non-contact high-temperature deformation measuring system based on digital image correlation technique[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1960-1967 (in Chinese).
[7]  PHALIPPOU J, DESPETIS F, CALAS S, et al. Comparison between sintered and compressed aerogels[J]. Optical Materials, 2004, 26(2): 167-172.
[8]  ZHANG Z, SUN L, WEI X Q, et al. Mechanical property of silica aerogel fibers composite insulation[J]. Rare Metal Materials & Engineering, 2012, 41(6): 415-418.
[9]  PAJONK G M, TEICHNER S J. Proceedings of the first international symposium on aerogels[M]. Berlin: Springer, 1985: 193-199.
[10]  冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32(1): 40-44. FENG J, GAO Q F, FENG J Z, et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32(1): 40-44 (in Chinese).
[11]  PARMENTER K E, MILSTEIN F. Mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1998, 223(3): 179-189.
[12]  高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究[D]. 长沙: 国防科技大学, 2009. GAO Q F. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009 (in Chinese).
[13]  ROY S, SHIMPI N, KATTI A, et al. Mechanical characterization and modeling of isocyanate-crosslinked nanostructured silica aerogels[C]//47th AIAA/AMSE/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2006: 1770.
[14]  GUPTA N, RICCI W. Processing and compressive properties of aerogel/epoxy composites[J]. Journal of Materials Processing Technology, 2008, 198(1-3): 178-182.
[15]  王小东. 纳米多孔SiO2气凝胶隔热复合材料应用基础研究[D]. 长沙: 国防科学技术大学, 2006. WANG X D. Base research on the application of nanoporous SiO2 aerogel based thermal insulation composites[D]. Changsha: National University of Defense Technology, 2006 (in Chinese).
[16]  PAN B, QIAN K, XIE H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review[J]. Measurement Science and Technology, 2009, 20(6): 062001.
[17]  YAMAGUCHI I. A laser-speckle strain gauge[J]. Scientific Instruments, 1981, 14(11): 1270.
[18]  PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 213427.
[19]  American Society for Testing Material International. Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at elevated temperatures: ASTM C1359—13[S]. West Conshohocken: ASTM International, 2013.
[20]  秦国彤, 门薇薇, 魏微, 等. 气凝胶研究进展[J]. 材料科学与工程学报, 2005, 23(2): 293-296. QIN G T, MEN W W, WEI W, et al. Progress in the study of aerogels[J]. Journal of Materials Science and Engineering, 2005, 23(2): 293-296 (in Chinese).
[21]  KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133