|
- 2016
热塑性复合材料自动纤维铺放装备技术
|
Abstract:
基于热塑性复合材料(TPC)自动纤维铺放(AFP)原位固结技术, 开展热塑性复合材料AFP装备技术研究, 分析AFP平台的功能需求, 提出平台总体规划方案, 设计开发热塑性复合材料自动铺丝头, 并提出预浸纱张力控制方案、精确送纱及温度闭环控制方案。在此基础上, 设计AFP系统可行性验证实验, 证明方案的可行性和平台的实用价值。结果表明:本实验平台针对热塑性复合材料铺放特点, 优化张力与铺放速度匹配, 实现预浸纱动态恒张力铺放, 确保成型构件质量; 实验平台调控铺放速度与送纱协调, 实现精确定位, 保障成型构件尺寸; 建立了铺放速度与加热功率、热流分布关系, 实现高精度温度场分布控制。虽AFP成型构件的力学性能比热模压成型构件的力学性能低约20%, 但为热塑性复合材料AFP装备技术的广泛应用奠定了基础。 Based on the automated fiber placement(AFP)in-situ curing technology of thermoplastic composite (TPC), we researched AFP system technology of thermoplastic composites, analyzed the functional requirements of AFP platform, proposed the overall planning scheme of platform, designed and developed the automatic prototype head of thermoplastic composites, meanwhile, proposed the schemes of tension control for prepreg, precise sending prepreg and closed-loop control for temperature. On this basis, feasibility verification experiments for the AFP system have been carried out to testify feasibility of the planning scheme and practical value of the platform. The results show that the experimental platform optimizes the matching of tension and laying speed, realizes the dynamic constant tension laying of prepreg and ensures the quality of the molding component according to the laying characteristics of thermoplastic composites. The experimental platform regulates the coordination of laying speed and sending prepreg to achieve precise positioning and security molding component size. The relationship between laying speed, heat power and heat flux distribution was established to realize high precision temperature field distribution control. Although the mechanical properties for AFP molding component are lower than those of hot moulded component, the AFP platform will lay foundation for wide use of AFP system technology in thermoplastic composites. 国家"973"计划(2014CB046501);江苏省高校优势学科建设工程
[1] | 陈燕, 葛恩德, 傅玉灿, 等. 纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2): 301-316. CHEN Y, GE E D, FU Y C, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 301-316 (in Chinese). |
[2] | MAIR R I. Advanced composite structures research in Australia[J]. Composite Structures, 2002, 57(1): 3-10. |
[3] | 罗永康, 李炜, 胡红, 等. 碳纤维复合材料在风力发电机叶片中的应用[J]. 电网与清洁能源, 2008, 24(5): 54-57. LUO Y K, LI W, HU H, et al. Application of carbon fiber reinforced composites in wind turbine blade[J]. Power System and Clean Energy, 2008, 24(5): 54-57 (in Chinese). |
[4] | 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009, 28(6): 28-32. XIAO J, LI Y, WEN L W, et al. Progress of automated placement technology for polymer composites[J]. Materials China, 2009, 28(6): 28-32 (in Chinese). |
[5] | 富宏亚, 李玥华. 热塑性复合材料纤维铺放技术研究进展[J]. 航空制造技术, 2012(18): 44-48. FU H Y, LI Y H. Research on thermoplastic composites fiber placement technology[J]. Aeronautical Manufacturing Technology, 2012(18): 44-48 (in Chinese). |
[6] | 迪力穆拉提·阿卜力孜, 段玉岗, 李涤尘, 等. 树脂基复合材料原位固化制造技术概述[J]. 材料工程, 2011(10): 84-90. ABLZ DLMLT, DUAN Y G, LI D C, et al. Overview of in-situ curing manufacturing technology for resin matrix composites[J]. Journal of Materials Engineering, 2011(10): 84-90 (in Chinese). |
[7] | RIZZOLO R H, WALCZYK D F. Ultrasonic consolidation of thermoplastic composite prepreg for automated fiber placement[J/OL]. Journal of Thermoplastic Composite Materials(2015-01-08)[2015-10-25]. http://dx.doi.org/10.1177/0892705714565705. |
[8] | 涂川川. 基于BP神经网络PID控制的温室环境控制系统的仿真研究[D]. 长春: 吉林农业大学, 2012. TU C C. Simulation study on PID control system based on BP neural network for greenhouse environment[D]. Changchun: Jilin Agricultural University, 2012 (in Chinese). |
[9] | 孔慧勇. 基于运动控制卡的全闭环控制系统研究[D]. 成都: 四川大学, 2003. KONG H Y. Research on full-closed loop control system based on the motion controller[D]. Chengdu: Sichuan University, 2003 (in Chinese). |
[10] | American Society for Testing and Materials International. Text method for determining the compressive properties of polymer matrix composite materials using the combined loading compression (CLC) test fixture: ASTM D 6641/D 6641 M—09[S]. West Conshohocken: ASTM International, 2010. |
[11] | 中国国家标准化管理委员会. 单向纤维增强塑料层间剪切强度试验方法: GB 3357—82[S]. 北京: 中国标准出版社, 1998. Standard Administration of the People's Republic of China. Test method for interplay shear strength of unidirectional fiber reinforced plastics: GB 3357—82[S]. Beijing: Standards Press of China, 1998 (in Chinese). |
[12] | 杜善义. 先进复合材料与航天[J]. 复合材料学报, 2007, 24(1): 1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). |
[13] | 肖军, 张建宝, 李勇, 等. 自动铺带技术研究现状[J]. 航空制造技术, 2008(25): 126-128. XIAO J, ZHANG J B, LI Y, et al. Research status of automatic tape-laying technology[J]. Aeronautical Manufacturing Technology, 2008(25): 126-128 (in Chinese). |
[14] | SONMEZ F O, AKBULUT M. Process optimization of tape placement for thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(9): 2013-2023. |
[15] | 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). |
[16] | 谢薇. 新型热塑性复合材料设计概念及其自动化生产[J]. 玻璃钢, 2010(4): 18-21. XIE W. New thermoplastic composites design concepts and their automated manufacture[J]. Fiber Reinforced Plastics, 2010(4): 18-21 (in Chinese). |
[17] | AUGUST Z, OSTRANDER G, MICHASIOW J, et al. Recent developments in automated fiber placement of thermoplastic composites[J]. SAMPLE Journal, 2014, 50(2): 30-35. |
[18] | 韩振宇, 李玥华, 富宏亚, 等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2): 91-96. HAN Z Y, LI Y H, FU H Y, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012(2): 91-96 (in Chinese). |
[19] | BECKWITH S W, SCOTT W. Filament winding vs. fiber placement manufacturing technologies[J]. SAMPE Journal, 2008, 44(2): 54-55. |
[20] | COMER A J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 10-20. |