|
- 2016
电介质复合材料用Al粉的控制钝化及其表征
|
Abstract:
作为嵌入式电容器用电介质之一, 低成本、易加工、高介电常数的Al粉/高分子复合材料有潜在的应用前景。为了降低这种材料的介电损耗, 分别以空气和微量水为氧化剂, 对Al粉进行二次钝化, 并表征了钝化膜的结构和化学组成, 测量了这种钝化Al粉及其聚四氟乙烯(PTFE)复合材料的介电性能。结果表明:生成的数纳米厚的二次钝化膜覆盖在Al粉自钝化膜上面, 空气钝化膜以Al2O3为主, 水钝化膜以Al(OH)3为主;空气钝化缓慢, 二次钝化膜薄, 表面光滑, 而水钝化较快, 二次钝化膜厚, 但结构疏松。与空气钝化相比, 水钝化能够更好地设计钝化膜厚度, 从而调控Al粉/PTFE复合材料的介电性能。 As one of dielectric materials for embedded capacitors, Al powder/polymer composites have good application potentials due to low cost, easy processability and high dielectric constant. To lower the dielectric loss of these materials, the secondary passivation processes of Al flakes using air and tiny water respectively as the oxidants were studied. The structure and chemical composition of passivation films were characterized, and dielectric properties were evaluated for the passivated Al flakes and their polytetrafluoroethylene (PTFE) composites. The results show that several-nanometer thick secondary passivated film forms outside the self-passivated film of Al flakes, mainly consisting of Al2O3 and Al(OH)3. The former contains main Al2O3, and the latter contains main Al(OH)3. Air passivation occurs very slowly, the resulting secondary passivated films are thin but smooth, in contrast, tiny-water passivation proceeds quickly; the resulting ones are thick but loose. Tiny-water passivation exhibits better applicability in tailoring the thickness of passivated films than air passivation, so as to adjust the dielectric properties of Al flakes/PTFE composites. 国家自然科学基金(51164026);内蒙古自治区自然科学基金(2015BS0512);内蒙古科技大学创新基金(2014QDL016);内蒙古科技大学材料与冶金学院青年人才孵化器平台资助项目(2014CY012)
[1] | SHAHRAVAN A, DESAI T, MATSOUKAS T. Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials[J]. Applied Materials and Interfaces, 2014, 6(10): 7942-7947. |
[2] | XU J, WONG C P. Low-loss percolative dielectric composite[J]. Applied Physics Letters, 2005, 87(8): 082907-3. |
[3] | ZHANG Y, WANG Y, DENG Y, et al. High dielectric constant and low loss in polymer composites filled by self-passivated zinc particles[J]. Materials Letters, 2012, 72: 9-11. |
[4] | 胡娜, 薛丽红, 顾健, 等. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化[J]. 金属学报, 2015, 51(2): 216-222. HU N, XUE L H, GU J, et al. Optimization of grading on microstructure and mechanical properties of Al13Fe4/Al composites in situ synthesized by mechanical alloying and spark plasma sintering[J]. Acta Metallurgica Sinica, 2015, 51(2): 216-222 (in Chinese). |
[5] | ALAM M A, AZARIAN M H, PECHT M G. Embedded capacitors in printed wiring board: A technological review[J]. Journal of Electric Materials, 2012, 41(8): 2286-2303. |
[6] | DANG Z, YUAN J, ZHA J, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science, 2012, 57(4): 660-723. |
[7] | SHEN Y, GUAN Y, HU Y, et al. Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nano composite under high electric field[J]. Applied Physics Letters, 2013, 103(7): 072906-4. |
[8] | WEI X, XING R, ZHANG B, et al. Preparation and dielectric properties of PATP-coated nano-BaTiO3/epoxy resin composites[J]. Ceramics International, 2015, 41(Suppl.1): 344-348. |
[9] | LIU S, YE M, HAN A, et al. Preparation and characterization of energetic materials coated superfine aluminum particles[J]. Applied Surface Science, 2014, 288: 349-355. |
[10] | JELLISS P A, BUCKNER S W, CHUNG S W, et al. The use of 1, 2-epoxyhexane as a passivating agent for core-shell aluminum nanoparticles with very high active aluminum content[J]. Solid State Sciences, 2013, 23: 8-12. |
[11] | RAZAVI TOUSI S S, SZPUNAR J A. Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum-water reaction[J]. International Journal of Hydrogen Energy, 2013, 38(2): 795-806. |
[12] | JOUBERT M, SAVE M, MORNET S, et al. Surface patterning of micron-sized aluminum flakes by seeded dispersion polymerization: Towards waterborne colored pigments by gold nanoparticles adsorption[J]. Polymer, 2014, 55(3): 762-771. |
[13] | ZHOU Y, WANG H. An Al@Al2O3@SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores[J]. Applied Physics Letters, 2013, 102(13): 132901-4. |
[14] | KARLSSON P M, BAEZA A, PALMQVIST A E C, et al. Surfactant inhibition of aluminium pigments for waterborne printing inks[J]. Corrosion Science, 2008, 50(8): 2282-2287. |
[15] | AMIRSHAQAQI N, SALAMI-KALAJAHI M, MAHDAVIAN M. Investigation of corrosion behavior of aluminum flakes coated by polymeric nanolayer: Effect of polymer type[J]. Corrosion Science, 2014, 87: 392-396. |
[16] | FENG M, HUANG X, TANG H, et al. Effects of surface modification on interfacial and rheological properties of CCTO/PEN composite films[J]. Colloids and Surfaces A, 2014, 441: 556-564. |
[17] | BRAND J, SLOOF W G, TERRYN H, et al. Correlation between hydroxyl fraction and O/Al atomic ratio as determined from XPS spectra of aluminium oxide layers[J]. Surface and Interface Analysis, 2004, 36(1): 81-88. |
[18] | CAI N, LIU Q, TONG X, et al. X-ray photoelectron spectroscopy study of the passivation of NiAl(100) by water vapor[J]. Langmuir, 2014, 30(3): 774-783. |
[19] | LI L, PI P, WEN X, et al. Optimization of sol-gel coatings on the surface of aluminum pigments for corrosion protection[J]. Corrosion Science, 2008, 50(3): 795-803. |
[20] | 高鑫欣, 程辉, 张邦文. 片状锌粉的可控钝化及电性能研究[J]. 内蒙古科技大学学报, 2014, 33(1): 19-23. GAO X X, CHENG H, ZHANG B W. Study of controlled passivation and electrical properties of zinc sheet powder[J]. Journal of Inner Mongolia University of Science & Technology, 2014, 33(1): 19-23 (in Chinese). |
[21] | XU J, WONG C P. Effects of the low loss polymers on the dielectric behavior of novel aluminum-filled high-K nano-composites[C]//9th Int'l Symposium on Advanced Packaging Materials. Piscataway, NJ: IEEE Press, 2004: 158-170. |
[22] | HUANG X, GAO T, PAN X, et al. A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications[J]. Journal of Power Sources, 2013, 229: 133-140. |
[23] | NIE H, SCHOENITZ M, DREIZIN E L. Calorimetric investigation of the aluminum-water reaction[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11035-11045. |