全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

碳纳米管有序排列对碳纤维增强环氧树脂基复合材料低温性能的影响
Effects of aligned carbon nanotubes in matrix on mechanical properties of carbon fiber reinforced epoxy composites at cryogenic temperature

DOI: 10.13801/j.cnki.fhclxb.20161103.001

Keywords: 环氧树脂,碳纤维,碳纳米管,性能,低温
epoxy
,carbon fiber,carbon nanotubes,properties,cryogenic temperature

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高碳纤维增强环氧树脂(CF/EP)复合材料在低温(77 K)循环条件下的抗微裂纹性能,采用共沉淀法制备了具有良好顺磁性的Fe3O4修饰氧化碳纳米管(Fe3O4-O—MWCNTs),并研究了Fe3O4-O—MWCNTs在环氧树脂(EP)基体中的有序排列对EP及CF/EP复合材料低温性能的影响。结果表明:Fe3O4-O—MWCNTs的有序排列可有效提高EP基体的低温力学性能及降低EP基体的热膨胀系数,相对于纯EP,Fe3O4-O—MWCNTs改性EP的热膨胀系数降低了41.6%;相对于CF/EP复合材料,Fe3O4-O—MWCNTs改性CF/EP复合材料在低温环境下的微裂纹密度降低了56.2%。 In order to improve the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) at cryogenic temperature (77 K), Fe3O4 modified O-MWCNTs (Fe3O4-O-MWCNTs) with good paramagnetic properties were prepared by co-precipitation method. The effects of the addtions of aligned Fe3O4-O-MWCNTs on the properties of epoxy (EP) and CF/EP composites at 77 K were studied. The results show that the aligned Fe3O4-O-MWCNTs can effectively improve the mechanical properties of EP matrix at 77 K and reduce the coefficient of thermal expansion (α) of EP matrix. It can also obviously improve the micro-crack resistance of CF/EP composites at 77 K. Comparing to the neat EP, α of aligned Fe3O4-O-MWCNTs modified EP composite decreases by 41.6%. Comparing to CF/EP composite, the micro-crack density of aligned Fe3O4-O-MWCNTs modified CF/EP composite at 77 K decreases by 56.2%.

References

[1]  BHOWMIK S, BONIN H W, BUI V T, et al. Modification of high-performance polymer composite through high-energy radiation and low-pressure plasma for aerospace and space applications[J]. Journal of Applied Polymer Science, 2006, 102(2): 1959-1967.
[2]  李佳铌, 俞科静, 钱坤, 等. 氧化石墨烯-SiO2杂化材料对环氧树脂拉伸性能的影响[J]. 复合材料学报, 2014, 31(5): 1192-1197. LI J N, YU K J, QIAN K, et al. Effect of grapheme oxide-SiO2 hybrid materials on tensile properties of epoxy[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1192-1197 (in Chinese).
[3]  HAN J T, CHO K. Layered silicate-induced enhancement of fracture toughness of epoxy molding compounds over a wide temperature range[J]. Macromolecular Materials and Engineering, 2005, 290: 1184-1191.
[4]  TIMMERMAN J F, HAYES B S, SEFERIS J C. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites Science and Technology, 2002, 62: 1249-1258.
[5]  KIM M G, HONG J S, KANG S G, et al. Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperat-ure[J]. Composites Part A, 2008, 39: 647-654.
[6]  赫玉欣, 张丽, 朱伸兵, 等. 碳纳米管的表面改性对环氧树脂低温(77 K)冲击性能及热膨胀系数的影响[J]. 复合材料学报, 2012, 29(4): 56-62. HE Y X, ZHANG L. ZHU S B, et al. Effects of MWCNTs on the impact strength at cryogenic temperature (77 K) and coefficient of thermal expansion of MWCNTs/epoxy resin[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 56-62 (in Chinese).
[7]  NOBELEN M, HAYES B S, SEFERIS J C, et al. Influence of elastomer distribution on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Journal of Applied Polymer Science, 2003, 90: 2268-2275.
[8]  HE Y X, ZHANG L, CHEN G W, et al. Surface functionalized carbon nanotubes and its effects on the mechanical properties of epoxy based composites at cryogenic temperature[J]. Polymer Bulletin, 2014, 71: 2465-2485.
[9]  中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006. Standardization Administration of the People’s Republic of China. Plastics-determination of tensile properties: GB/T 1040—2006[S]. Beijing: Standard Press of China, 2006 (in Chinese).
[10]  中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008. Standardization Administration of the People’s Republic of China. Plastics-determination of izod impact strength: GB/T 1843—2008[S]. Beijing: Standard Press of China, 2008 (in Chinese).
[11]  HE Y X, LI Q, KUILA T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications[J]. Composites: Part B, 2013, 44(1): 533-539.
[12]  LACHMAN N, WAGNER HD. Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites[J]. Composites: Part A, 2010, 41: 1093-1098.
[13]  ZHANG Y Q, ZHAO R, LEI Y J, et al. A novel carbon nanotubes/Fe3O4 inorganic hybrid material: Synthesis, characterization and microwave electromagnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2011, 323: 1006-1010.
[14]  LIU S W, WEHMSCHULTE R J. A novel hybrid of carbon nanotubes/iron nanoparticles: Iron-filled nodule-containing carbon nanotubes[J]. Carbon, 2005, 43: 1550-1555.
[15]  SCHUTZ J B. Properties of composite materials for cryogenic applications[J]. Cryogenics, 1998, 38(1): 3-12.
[16]  沈小军, 孟令轩, 付绍云. 石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能[J]. 复合材料学报, 2015, 32(1): 21-26. SHEN X J, MENG L X, FU S Y, et al. Cryogenic mechanical properties of epoxy composites synergistically reinforced by grapheme-multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 21-26 (in Chinese).
[17]  WANG S J, XIN F, CHEN Y, et al. Phosphorus-nitrogen containing polymer wrapped carbon nanotubes and their flame-retardant effect on epoxy resin[J]. Polymer Degradation and Stability, 2016, 129: 133-141.
[18]  WANG S R, LIANG Z Y, GONNET P, et al. Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites[J]. Advanced Functional Materials, 2007, 17(1): 87-92.
[19]  JANG J S, VARISCHETTI J H, LEE G W, et al. Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites[J]. Composites: Part A, 2011, 42(1): 98-103.
[20]  张娜, 龙春光, 何宏燕, 等. 碳纳米纤维纸-玻纤/环氧复合材料对风力发电叶片的影响[J]. 2013, 30(1): 90-95. ZHANG N, LONG C G, HE H Y, et al. Effect of carbon nano-fiber paper-glass fiber/epoxy used for wind turbineblade[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 90-95 (in Chinese).
[21]  FREEMAN D C, TALAY T A. Reusable launch vehicle technology program[J]. Acta Astronautica, 1997, 41(11): 777-790.
[22]  UTSUMI S, URITA K, KANOH H, et al. Preparing a magnetically responsive single-wall carbon nanohorn colloid by anchoring magnetite nanoparticles[J]. Journal of Materials Chemistry B, 2006, 110(14): 7165-7170.
[23]  WAN W T, YU D M, HE J, et al. Simultaneously improved toughness and dielectric properties of epoxy/core-shell particle blends[J]. Journal of Applied Polymer Science, 2008, 107(2): 1020-1028.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133