|
- 2017
简支边界条件下超椭圆蜂窝夹芯板的自由振动
|
Abstract:
基于Reddy三阶剪切板理论,将铝基蜂窝芯层等效为一正交异性层,等效弹性参数由修正后的Gibson公式得出,对简支边界条件下超椭圆蜂窝夹芯板弯曲振动的固有频率进行了理论推导,应用具体算例与实验值和有限元计算结果进行了验证,结果表明本文方法具有较高的计算精度。研究了板宽、板厚和芯层胞元结构参数对简支边界条件下超椭圆蜂窝夹芯板固有频率的影响,并绘出相应的曲线图,该曲线图对超椭圆蜂窝夹芯板的工程应用具有指导意义。 The honeycomb core of cells was modeled as a layer of orthotropic material whose physical and the mechanical properties were determined by using the corrected Gibson's formula. Based on the Reddy Third-order shear plate theory, a preliminary study was conducted for the natural frequency of the super elliptical honeycomb panels with simply supported boundary conditions. Comparing the FEM results with experimental data of concrete calculated examples, it shows the method mentioned in this article has great calculation precision. The effects of panel width, thickness and structure parameters of core layer cell on the natural frequency of super elliptical honeycomb panels with simply supported boundary conditions were investigated. And plotted corresponding graphs will guide the further research and engineering application of super elliptical honeycomb panels. 教育部博士点基金(20120095110013)
[1] | YU S D, CLEGHORN W L. Free flexural vibration analysis of symmetric honeycomb panels[J]. Journal of Sound and Vibration, 2005, 284(1): 189-204. |
[2] | LI Y Q, JIN Z Q. Free flexural vibration analysis of symmetric rectangular honeycomb panels with SCSC edge supports[J]. Composite Structures, 2008, 83(2): 154-158. |
[3] | 李永强, 李锋, 何永亮. 四边固支铝基蜂窝夹层板弯曲自由振动分析[J]. 复合材料学报, 2011, 28(3): 210-216. LI Yongqiang, LI Feng, HE Yongliang. Flexural vibration analysis of honeycomb sandwich plate with completely clamped support[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 210-216 (in Chinese). |
[4] | 李永强, 张英杰, 李锋. 四边固支蜂窝夹层板1∶3内共振非线性动力学分析[J]. 固体力学学报, 2012, 33(5): 523-532. LI Yongqiang, ZHANG Yingjie, LI Feng. Analytic study on 1∶3 internal resonance nonlinear dynamics of honeycomb sandwich panels with completed clamped supported boundaries[J]. Acta Mechanica Solida Sinica, 2012, 33(5): 523-532 (in Chinese). |
[5] | 李永强, 李洁, 李锋, 等. 四边固支对称蜂窝夹层板主共振非线性动力学计算[J]. 复合材料学报, 2012, 29(6): 179-186. LI Yongqiang, LI Jie, LI Feng, et al. Primary resonance of the symmetric rectangular honeycomb sandwich panels with completed clamped supported boundaries[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 179-186 (in Chinese). |
[6] | NILSSON E, NILSSON A C. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores[J]. Journal of Sound and Vibration, 2002, 251(3): 409-430. |
[7] | MEI F H, WEN B H. A study on composite honeycomb sandwich panel structure[J]. Materials and Design, 2008, 29(3): 709-713. |
[8] | CHAKRAVERTY S, BHAT R B, STIHARU I. Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method[J]. Journal of Sound and Vibration, 2001, 241(3): 524-539. |
[9] | LI Y Q, LI F, ZHU D W. Geometrically nonlinear free vibrations of the symmetric rectangular honeycomb sandwich panels with simply supported boundaries[J]. Composite Structures, 2010, 92(5): 1110-1119. |
[10] | LI Y Q, LI F, HE Y L. Geometrically nonlinear forced vibrations of the symmetric rectangular honeycomb sandwich panels with completed clamped supported boundaries[J]. Composite Structures, 2011, 93(2): 360-368. |
[11] | LI Y Q, ZHU D W. Geometrically nonlinear forced vibrations of the symmetric honeycomb sandwich panels affected by the water[J]. Composite Structures, 2011, 93(2): 880-888. |
[12] | LAI L. Study of free vibration of aluminum honeycomb panels[D]. Toronto: University of Toronto, 2002. |
[13] | CHEN C C, LIM C W, KITIPORNCHAI S, et al. Vibration of symmetrically laminated thick super elliptical plates[J]. Journal of Sound and Vibration, 1999, 220(4): 659-682. |
[14] | LEISSA A W. Vibration of a simply supported elliptical plate[J]. Journal of Sound and Vibration, 1967, 6 (1): 145-148. |
[15] | FU M H, YIN J R. Equivalent elastic parameters of the honeycomb core[J]. Acta Mechanica Sinica, 1999, 31:113-118. |
[16] | REDDY J R. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4): 745-752. |
[17] | 李永强, 金志强, 王微, 等. 四边简支条件下对称蜂窝夹层板的弯曲振动分析[J]. 机械工程学报, 2008, 44(5): 165-169. LI Yongqiang, JIN Zhiqiang, WANG Wei, et al. Flexural vibration analysis for symmetric honeycomb panels of simple support boundary conditions[J]. Journal of Mechanical Engineering, 2008, 44(5): 165-169 (in Chinese). |
[18] | LI Y Q, ZHU Dawei. Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy’s third-order plate theory[J]. Composite Structures, 2009, 88(1): 33-39. |
[19] | WANG C M, WANG L, LIEW K M. Vibration and buckling of super elliptical plates[J]. Journal of Sound and Vibration, 1994, 171(3): 301-314. |
[20] | RAVILLE M E, UENG C E S. Determination of natural frequencies of vibration of a sandwich plate[J]. Experimental Mechanics, 1967, 7: 490-493. |