全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于三维梁理论的复合材料层合管等效抗弯刚度
Equivalent bending stiffness of composite laminated tube based on 3D beam theory

DOI: 10.13801/j.cnki.fhclxb.20151029.001

Keywords: 等效抗弯刚度,复合材料层合管,三维梁理论,三维弹性效应,经典层合板理论
equivalent bending stiffness
,composite laminated tubes,3D beam theory,3D elastic effects,classical laminated plate theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对任意铺层形式和任意壁厚复合材料圆形层合管件,提出一种等效抗弯刚度的计算方法。此方法采用符合复合材料圆形管件梁真实变形的变形理论,考虑横向剪切变形,非均匀扭转效应,主、次挠曲效应和层合材料的三维弹性效应,按照壳壁中实际应力状态,建立了复合材料圆形管件等效抗弯刚度的计算模型。通过与4种铺层管件的三点弯曲实验结果以及经典层合板理论计算的等效抗弯刚度进行对比,验证了计算模型的正确性。通过退化与各向同性材料抗弯刚度的计算方法进行对比,分析了计算模型的适用性。 In response to composite tube with arbitrary lamination and thickness, an approach of the equivalent bending stiffness was presented. The deformation theory with realistic deformation of composite tube beam was used in this analysis. Transverse shear deformation, non-uniform torsion effects, the primary and the secondary warping effects and 3D elastic effects in laminate material were considered. According to the actual stress state of the shell wall, the caculation model of the equivalent bending stiffness of the composite tube was established. By comparison with three-point bending experimental data and the equivalent bending stiffness calculated by classical laminated plate theory of four composite tubes, the calculation model was validated. The application of the calculation model was analyzed by comparing degradation of the present theory with the calculation method of bending stiffness of isotropic material. 国家自然科学基金(51408606);国家科技支撑计划(2014BAB15B01-05)

References

[1]  ZHANG D D, HUANG Y X, ZHAO Q L, et al. Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system[J]. Composite Structures, 2014, 108: 600-615.
[2]  KIM C, WHITE S R. Analysis of thick hollow composite beams under general loadings[J]. Composite Structures, 1996, 34(3): 263-277.
[3]  KIM C, WHITE S R. Thick-walled composite beam theory including 3D elastic effects and torsional warping[J]. International Journal of Solids and Structures, 1997, 34(31-32): 4237-4259.
[4]  ODEN J T, RIPPERGER E A. Mechanics of elastic structures[M]. New York: McGraw-Hill Book Company, 1980:125-134.
[5]  沃丁柱. 复合材料大全[M]. 北京: 化学工业出版社, 2001: 479-483. WO D Z. Encyclopedia of composites[M]. Beijing: Chemical Industry Press, 2001: 479-483 (in Chinese).
[6]  NA S. Control of dynamic response of thin-walled composite beams using structural tailoring and piezoelectric actuation[D]. Virginia: Virginia Polytechnic Institute and State University, 1997.
[7]  QIN Z M. Vibration and aeroelasticity of advanced aircraft wings modeled as thin-walled beams: Dynamics, stability and control[D]. Virginia: Virginia Polytechnic Institute and State University, 2001.
[8]  姜鲁珍, 文献民, 马兴瑞, 等. 复合材料圆管件的等效模型研究[J]. 工程力学, 2000, 17(3): 127-132. JIANG L Z, WEN X M, MA X R, et al. On the equivalent model of composite tubular element[J]. Engineering Mechanics, 2000, 17(3): 127-132 (in Chinese).
[9]  文献民, 王本利, 马兴瑞. 复合材料圆管件等效模量的计算方法[J]. 复合材料学报, 1999, 16(2): 136-140. WEN X M, WANG B L, MA X R. On the effevtive modulus of composite tubulus element[J]. Acta Materiae Compositae Sinica, 1999, 16(2): 136-140 (in Chinese).
[10]  DERISI B. Development of thermoplastic composite tubes for large deformation[D]. Oregon: Concordia University, 2008.
[11]  彭超义.空间运载器推力支架用复合材料管件轴压性能研究[D]. 长沙:国防科学技术大学, 2006. PENG C Y. Study on the axial compression properties of the composite cylinders for the thruster truss structures in aerospace launch vehicles[D]. Changsha: National University of Defence Technology, 2006 (in Chinese).
[12]  LI F, ZHAO Q L, CHEN L, et al. Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pipe[J]. The Scientific World Journal, 2014, 2014: 1-12.
[13]  JEGLEY D C, WU K C, PHELPS J E, et al. Structural efficiency of composite struts for aerospace applications[J]. Journal of Spacecraft and Rockets, 2012, 49(5): 915-924.
[14]  SCHVTZE R. Lightweight carbon fibre rods and truss structures[J]. Materials & Design, 1997, 18(4-6): 231-238.
[15]  张兴虎, 刘永辉, 冯海潮. FRP管材轴心受压构件的稳定性能[J]. 玻璃钢/复合材料, 2014(2): 19-22. ZHANG X H, LIU Y H, FENG H C. Stable performance of FRP tube axial compression members[J]. Fiber Reinforced Plastics/Composites, 2014(2): 19-22 (in Chinese).
[16]  钱鹏, 叶列平, 翁冠群. CFRP杆轴心受力失效模式与变形性能研究[C]//第三届全国FRP学术交流会议论文集. 北京: 中国土木工程学会, 2004: 349-355. QIAN P, YE L P, WENG G Q. Study of failure models and deformation of CFRP poles under uni-axial loading[C]//Proceeding of the 3rd National FRP Conference. Beijing: China Civil Engineering Socienty, 2004:349-355 (in Chinese).
[17]  WILD P M, VICKERS G W. Analysis of filament-wound cylinderical shells under combined centrifugal pressure and axial loading[J]. Composites Part A: Applied Science & Manufacturing, 1997, 28(1): 47-55.
[18]  JOLICOEUR C, CARDOU A. Analytical solution for bending of coaxial orthotropic cylinders[J]. Engineering Mechanics, 1994, 120(12): 2556-2574.
[19]  CHOUCHAOUI C S, OCHOA O. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part I: Governing equations[J]. Composite Structures, 1999, 44(4): 221-229.
[20]  LEKHNITSKII S G. Theory of elasticity of an anisotropic body[M]. Moscow: MIR Publishers, 1981: 215-256.
[21]  SHADMEHRI F, DERISI B, HOA S V. On bending stiffness of composite tubes[J]. Composite Structures, 2011, 93(9): 2173-2179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133