全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于小波内聚力模型的界面裂纹扩展
Interface crack growth based on wavelet cohesive zone model

DOI: 10.13801/j.cnki.fhclxb.20160315.012

Keywords: 内聚力模型,小波有限元,界面裂纹扩展,虚拟裂纹闭合技术,应变能释放率
cohesive zone model
,wavelet finite element,interface crack growth,virtual crack closure technique,strain energy release rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用区间B样条小波良好的局部化性能,将内聚力模型(CZM)引入小波有限元法(WFEM)数值分析中,以区间B样条小波尺度函数作为插值函数,构造小波内聚力界面单元,推导了小波内聚力界面单元刚度矩阵,基于虚拟裂纹闭合技术(VCCT)计算界面裂纹应变能释放率(SERR),采用β-Κ断裂准则,实现界面裂纹扩展准静态分析。将WFEM和传统有限元法(CFEM) 的SERR数值分析结果与理论解进行比较,结果表明:采用WFEM和CFEM计算的SERR分别为96.60 J/m2 和 101.43 J/m2,2种方法的SERR数值解与理论解相对误差分别为1.85%和3.06%,这明确表明WFEM在计算界面裂纹扩展方面能用较少单元和节点数获得较高的计算精度和效率。在此基础上,探讨了界面裂纹初始长度和双材料弹性模量比对界面裂纹扩展的影响,分析结果表明:界面裂纹尖端等效应力随界面裂纹初始长度的增加而增加;双材料弹性模量比相差越大,界面裂纹越易于扩展,且裂纹扩展长度也越大,因此可通过调节双材料弹性模量比来延缓界面裂纹扩展。 Cohesive zone model(CZM) was applied to numerical analysis of wavelet finite element method(WFEM) by using the excellent localization properties of interval B-spline wavelet, interface elements of wavelet cohesive zone were constructed by regarding interval B-spline wavelet scaling functions as the interpolation functions, stiffness matrix of interface elements of wavelet cohesive zone was derived, and strain energy release rate(SERR) of interface crack was calculated by using virtual crack closure technique(VCCT), and the quasi-static analysis of interface crack growth was achieved by taking β-Κ fracture criterion. The numerical analyzed results of SERR by WFEM and conventional finite element method(CFEM) were compared with theoretical results, and the results show that the SERR calculated by WFEM and CFEM are 96.60 J/m2 and 101.43 J/m2, respectively, and the relative errors of SERR between numerical and theoretical results of two method are 1.85% and 3.06%, respectively. It clearly indicates that WFEM can obtain higher accuracy and efficiency of calculating interface crack growth with less numbers of elements and nodes. On this basis, we studied the influence of initial interface crack length and bi-material elastic modulus ratio on interface crack growth. It is found that the equivalent stress at interface crack tip tends to increase with the increase of initial interface crack length. The difference of bi-material elastic modulus ratio is greater, interface crack is easier to expand, and the length of interface crack growth is also greater, therefore, interface crack growth can be slowed by adjusting bi-material elastic modulus ratio. 黑龙江省科技厅重大专项(GA13A402);黑龙江省教育厅科技项目(12541091)

References

[1]  李成, 铁瑛, 郑艳萍. 两种材料的性质对双材料界面裂纹能量释放率及应力强度因子的影响[J]. 机械工程学报, 2009, 45(3): 104-108. LI C, TIE Y, ZHENG Y P. Influence of material characters on bimaterial interfacial crack energy release rates and stress intensity factors[J]. Journal of Mechanical Engineering, 2009, 45(3): 104-108 (in Chinese).
[2]  胡舵. 复合材料界面裂纹扩展机制的数值模拟研究[D]. 南昌: 南昌大学, 2013. HU D. The numerical simulation on composite materials interface crack propagation mechanism[D]. Nanchang: Nanchang University, 2013 (in Chinese).
[3]  MIRAVETE A, JIMéNEZ M A. Application of the finite element method to prediction of onset of delamination growth[J]. Applied Mechanics Reviews, 2002, 55(2): 89-105.
[4]  ?ZDEMIR I, BREKELMANS W A M, GEERS M G D. A thermo-mechanical cohesive zone model[J]. Computational Mechanics, 2010, 46(5): 735-745.
[5]  鲁国富, 刘勇, 张呈林. 基于虚拟裂纹闭合技术的应变能释放率分析[J]. 复合材料学报, 2009, 26(2): 210-216. LU G F, LIU Y, ZHANG C L. Analysis of strain energy release rate based on virtual crack closure technique[J]. Acta Materiae Compositae Sinica, 2009, 26(2): 210-216 (in Chinese).
[6]  顾志芬. 两种材料界面裂纹的应力强度因子[J]. 复合材料学报, 1986, 3(3): 43-52. GU Z F. Stress intensity factor of a crack at the bi-material interface[J]. Acta Materiae Compositae Sinica, 1986, 3(3): 43-52 (in Chinese).
[7]  罗吉祥, 唐春, 郭然. 纤维增强复合材料界面脱层和基体裂纹的模拟分析[J]. 复合材料学报, 2009, 26(6): 201-209. LUO J X, TANG C, GUO R. Numerical simulations of interfacial debonding and matrix cracking in fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 201-209 (in Chinese).
[8]  CHUI K C, QUAK E. Wavelets on a bounded interval[J]. Numerical Methods of Approximation Theory, 1992, 105(9): 53-75.
[9]  VAN HAL B A E, PEERLINGS R H J, GEERS M G D, et al. Cohesive zone modeling for structural integrity analysis of IC interconnects[J]. Microelectronics Reliability, 2007, 47(8): 1251-1261.
[10]  白瑞祥, 陈浩然. 含分层损伤复合材料加筋层合板的分层扩展研究[J]. 应用数学和力学, 2004, 25(4): 368-378. BAI R X, CHEN H R. Numerical analysis of delamination growth for stiffened composite laminated plates[J]. Applied Mathematics and Mechanics, 2004, 25(4): 368-378 (in Chinese).
[11]  王军, 冯国旭, 杨亚东, 等. 直升机复合材料桨叶振动失效分析[J]. 失效分析与预防, 2011, 6(2): 80-84. WANG J, FENG G X, YANG Y D, et al. Vibration failure of helicopter composite blade[J]. Failure Analysis and Prevention, 2011, 6(2): 80-84 (in Chinese).
[12]  LI X F, WANG B L. Anti-plane shear crack normal to and terminating at the interface of two bonded piezoelectric ceramics[J]. International Journal of Solids and Structures, 2007, 44(3): 3796-3810.
[13]  彭惠芬, 孟广伟, 周立明, 等. 基于WFEM的虚拟裂纹闭合法[J]. 吉林大学学报: 工学版, 2011, 41(5): 1364-1368. PENG H F, MENG G W, ZHOU L M, et al. Virtual crack closure technique based on wavelet finite element method[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(5): 1364-1368 (in Chinese).
[14]  郭亚军. 复合材料层板双悬臂梁试样应变能释放率的有限元分析[J]. 复合材料学报, 1994, 11(3): 76-81. GUO Y J. Finite element analysis of strain-energy-release rate for double-cantilever beam specimen[J]. Acta Materiae Compositae Sinica, 1994, 11(3): 76-81 (in Chinese).
[15]  XIE D, BIGGERS S B. Progressive crack growth analysis using interface element based on the virtual crack closure technique[J]. Finite Elements in Analysis & Design, 2006, 42(11): 977-984.
[16]  沈浩杰, 姚卫星, 吴义韬. 复合材料层合板基体裂纹的协同损伤演化模型[J]. 复合材料学报, 2015, 32(4): 1032-1041. SHEN H J, YAO W X, WU Y T. Synergistic damage evolving model for matrix cracking in composite laminates[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1032-1041 (in Chinese).
[17]  卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报, 2015, 36(增刊1): 85-94. LU Z X. A simple review for cohesive zone models of composite interface and their applications[J]. Chinese Journal of Solid Mechanics , 2015, 36(Suppl.1): 85-94 (in Chinese).
[18]  BIEL A, STIGH U. Damage and plasticity in adhesive layer: An experimental study[J]. International Journal of Fracture, 2010, 165(1): 93-103.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133