全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

有限变形下闭孔泡沫铝的非线性压缩行为
Nonlinear compressive behaviors of closed-cell aluminum-alloy foams at finite deformation

DOI: 10.13801/j.cnki.fhclxb.20151204.002

Keywords: 球形闭孔高密度泡沫铝,有限变形,有效幂律势函数,非线性力学行为,黏性
spherical closed-cell high density aluminum-alloy foams
,finite deformation,effective power-law potentials,nonlinear mechanical behaviors,viscosity

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Huang(北京大学)和Wang(北京大学)的理论和热力学第二定律,研究了有限变形下闭孔泡沫铝的非线性压缩行为。通过引入内变量及内变量的演化方程,给出了有限变形下同时考虑细观结构参数和黏性效应的有效幂律势函数及相应的应力表达式。基于所提出的理论模型,通过算例讨论了细观力学方法、孔隙度和黏性效应对泡沫铝应力-应变曲线的影响规律。结果表明:模型预测与实验结果基本一致,且随着黏性系数的增大,考虑黏性效应的模型预测趋向于未考虑黏性效应时的模型预测。 Based on Huang (Peking University) and Wang (Peking University)'s theory as well as the second thermodynamic law, the nonlinear compressive behaviors of closed-cell aluminum-alloy foams were studied at finite deformation. By means of introducing the internal variable and evolution equations of internal variable, the expressions of effective power-law potentials and stresses were presented whick taks meso-structural parameter and viscosity effect into consideration. With the presented theoretical models, some numerical examples were conducted to analyze the influences of micromechanics approaches, porosity and viscosity effect on the stress-strain curves of aluminum foams. The results show that the model predictions are basically agree with the experimental result. In addition, it is found that the model predictions considering the viscosity effect tend to the model predictions without considering the viscosity effect when the viscous coefficient becomes larger. 国家自然科学基金(11472025)

References

[1]  DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams[J]. Journal of Mechanics and Physics of Solids, 2000, 48(6-7): 1253-1283.
[2]  MA G W, YE Z Q, SHAO Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36(6): 775-782.
[3]  MOTZ C, PIPPAN R. Deformation behaviour of closed-cell aluminium foams in tension[J]. Acta Materialia, 2001, 49(13): 2463-2470.
[4]  HAN F S, ZHU Z G. The mechanical behavior of foamed aluminum[J]. Journal of Materials Science, 1999, 34(2): 291-299.
[5]  PAPADOPOULOS D P, KONSTANTINIDIS I C, PAPANASTASIOU N, et al. Mechanical properties of Al metal foams[J]. Materials Letters, 2004, 58(21): 2574-2578.
[6]  王展光, 尚金堂, 何思渊, 等. 球形孔泡沫铝合金压缩性能与理论模型[J]. 材料热处理学报, 2006, 27(6): 129-133. WANG Z G, SHANG J T, HE S Y, et al. Compressive behavior of spherical pore Al alloy foam and its theoretical model[J]. Transactions of Materials and Heat Treatment, 2006, 27(6): 129-133 (in Chinese).
[7]  LU Z X, GAO Z T. Theoretical prediction for Young's modulus and yield strength of high-density foamed plastics[J]. Science in China Series E: Technological Sciences, 1997, 27(4): 318-324.
[8]  尚艳军, 卢天健, 陈常青. 球形闭孔泡沫金属材料力学行为研究[J]. 固体力学学报, 2009, 30(4): 325-332. SHANG Y J, LU T J, CHEN C Q. The mechanical behaviours of closed-cell aluminum-alloy foam with spherical pores[J]. Chinese Journal of Solid Mechanics, 2009, 30(4): 325-332 (in Chinese).
[9]  张健, 赵桂平, 卢天健. 闭孔泡沫铝应变率效应的试验和有限元分析[J]. 西安交通大学学报, 2010, 44(5): 97-101. ZHANG J, ZHAO G P, LU T J. Experimental and numerical study on strain rate effects of closed-cell aluminum foams[J]. Journal of Xi'an Jiaotong University, 2010, 44(5): 97-101 (in Chinese).
[10]  PONTE CASTA?EDA P. The effective mechanical properties of nonlinear isotropic composites[J]. Journal of Mechanics and Physics of Solids, 1991, 39(1): 45-71.
[11]  ZHANG W X, XU Z M, WANG T J, et al. Effect of inner gas pressure on the elastoplastic behavior of porous materials: A second-order moment micromechanics model[J]. International Journal of Plasticity, 2009, 25(7): 1231-1252.
[12]  DE BOTTON G, SHMUEL G. A new variational estimate for the effective response of hyperelastic composites[J]. Journal of Mechanics and Physics of Solids, 2010, 58(4): 466-483.
[13]  MA L H, YANG Q S, YAN X H, et al. Elastoplastic mechanics of porous materials with varied inner pressures[J]. Mechanics of Materials, 2014, 73(6):58-75.
[14]  ITSKOV M. Tensor algebra and tensor analysis for engineers: with applications to continuum mechanics[M]. Berlin: Springer Verlag, 2007: 85-92.
[15]  HARTE A M, FLECK N A, ASHBY M F. Fatigue failure of an open cell and a closed cell aluminium alloy foam[J]. Acta Materialia, 1999, 47(8): 2511-2524.
[16]  HUANG Z P, WANG J X. Nonlinear mechanics of solids containing isolated voids[J]. Applied Mechanics Reviews, 2006, 59(4): 210-229.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133