全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

空心玻璃微球含量对环氧复合泡沫塑料性能的影响
Effects of hollow glass microsphere content on properties of epoxy syntactic foams

DOI: 10.13801/j.cnki.fhclxb.20151022.001

Keywords: 空心玻璃微球,复合泡沫塑料,力学性能,动态力学分析,导热系数
hollow glass microsphere
,syntactic foams,mechanical properties,dynamic mechanical analysis,thermal conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

以空心玻璃微球(HGM)填充环氧树脂制备了密度为0.56~0.91 g/cm3的HGM/环氧复合泡沫塑料。研究了HGM含量对复合泡沫塑料黏度、力学性能、动态力学性能及隔热性能的影响。结果表明:表面偶联处理后增加了HGM的表面亲油性,改善了其与基体树脂间的相容性和界面性能,有利于HGM/环氧复合泡沫塑料性能的提高;体系黏度与HGM含量呈正相关,与温度呈负相关;随着HGM含量的增加,HGM/环氧复合泡沫塑料的压缩强度、弯曲强度和拉伸强度均有一定程度的降低,但是比强度变化不大,材料得到很大程度的轻质化;HGM的引入使得HGM/环氧复合泡沫塑料玻璃化转变温度向低温方向偏移,储能模量呈现先减小后增加的趋势,导热系数由纯环氧树脂的0.203 W/(m·K)减小到HGM含量为40wt%时的0.126 W/(m·K)。HGM/环氧复合泡沫塑料阻尼性能和隔热性能均有所提高。 Hollow glass microsphere(HGM)/epoxy syntactic foams were prepared with epoxy filled with HGM, The density of the syntactic foams was maintained 0.56-0.91 g/cm3. Viscosity, mechanical properties, dynamic mechanical properties and thermal insulation properties of the syntactic foams were investigated with respect to HGM content. The results show that surface coupling modification improves surface lipophilicity of HGM, thus increases the compatibility and interfacial property between HGM and resin matrix, which is beneficial to enhancing the property of syntactic foams. The viscosity of system increases with HGM content increasing and decreases with temperature increasing. The compressive, flexural and tensile strength decrease with increasing HGM content to some extent, the specific strength changes little, making a high degree of weight saving. With the incorporation of HGM, the glass transition temperature of HGM/epoxy syntactic foams shifts to low temperature and the storage modulus first decreases then increases, thermal conductivity decreases from 0.203 W/(m·K) of neat epoxy to 0.126 W/(m·K) of syntactic foams containing 40wt% of HGM, there is a significant improvement on damping and thermal insulation properties of HGM/epoxy syntactic foams. 湖北省企业委托项目(20131f0069)

References

[1]  AL-OWEINI R, EL-RASSY H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R''Si(OR')3 precursors[J]. Journal of Molecular Structure, 2009, 919(1-3): 140-145.
[2]  HU G H, YU D M. Tensile, thermal and dynamic mechanical properties of hollow polymerparticle-filled epoxy syntactic foam[J]. Materials Science and Engineering A, 2011, 528(15): 5177-5183.
[3]  KUMAR K S S, NAIR C P R, NINAN K N. Mechanical properties of polybenzoxazine syntactic foams[J]. Journal of Applied Polymer Science, 2008, 108(2): 1021-1028.
[4]  HU Y, MEI R G, AN Z G, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property[J]. Composites Science and Technology, 2013, 79(18): 64-69.
[5]  PATANKAR S N, DAS A, KRANOV Y A. Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 897-903.
[6]  YU M, ZHU P, MA Y Q. Effects of particle clustering on the tensile properties and failure mechanisms of hollow spheres filled syntactic foams: A numerical investigation by microstructure based modeling[J]. Materials & Design, 2013, 47: 80-89.
[7]  卢子兴, 邹波. 复合泡沫塑料模量和屈服强度的理论预测[J]. 复合材料学报, 2014, 31(4): 998-1005. LU Z X, ZOU B. Theoretical prediction for modulus and yield strength of syntactic foams[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 998-1005 (in Chinese).
[8]  中华人民共和国国家质量监督检验检疫总局. 树脂浇铸体性能试样方法: GB/T 2567-2008[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China. Test methods for properties of resin casting body: GB/T 2567-2008[S]. Beijing: Standards Press of China, 2008 (in Chinese).
[9]  GOYAL R K, KAPADIA A S. Study on phenyltrimethoxysilane treated nano-silicafilled high performance poly (etheretherketone) nanocomposites[J]. Composites Part B: Engineering, 2013, 50: 135-143.
[10]  WANG X, WANG P P, JIANG Y, et al. Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application[J]. Composites Science and Technology, 2014, 104: 1-8.
[11]  GUPTA N, WOLDESENBET E. Hydrothermal studies on syntactic foams and compressive strength determination[J]. Composite Structures, 2003, 61(4): 311-320.
[12]  WOLDESENBET E, PETER S. Radius ratio effect on high-strain rate properties of syntactic foam composites[J]. Journal of Materials Science, 2009, 44(6): 1551-1559.
[13]  HOHE J, HARDENACKE V, FASCIO V, et al. Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications[J]. Material & Design, 2012, 39: 20-32.
[14]  GUPTA N, PRIYA S, ISLAM R, et al. Characterization of mechanical and electrical properties of epoxy-glass microballoon syntactic composites[J]. Ferroelectrics, 2006, 345(1): 1-12.
[15]  GUPTA N, YE R, PORFIRI M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams[J]. Composites Part B: Engineering, 2010, 41(3): 236-245.
[16]  SWETHA C, KUMAR R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design, 2011, 32(8): 4152-4163.
[17]  ZHANG L Y, MA J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam[J]. Composites Science and Technology, 2010, 70(8): 1265-1271.
[18]  LI J W, LUO X G, LIN X Y. Preparation and characterization of hollow glass microsphere reinforced poly (butylene succinate) composites[J]. Materials & Design, 2013, 46: 902-909.
[19]  RUTZ B H, BERG J C. A review of the feasibility of lightening structural polymeric composites with voids without compromising mechanical properties[J]. Advances in Colloid and Interface Science, 2010, 160(1-2): 56-75.
[20]  LUXMOORE A R, OWEN D R J. The mechanics of syntactic foams[M]. Barking: Applied Science Publishers, 1980: 359-391.
[21]  SHUNMUGASAMY V C, PINISETTY D, GUPTA N. Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: Effect of temperature and loading frequency[J]. Journal of Materials Science, 2013, 48(4): 1685-1701.
[22]  JOHN B, REGHUNADHAN N C P, NINAN K N. Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams[J]. Materials Science and Engineering A, 2010, 527(21-22): 5435-5443.
[23]  YU D H, WANG B, FENG Y, et al. Investigation of free volume, interfacial, and toughening behavior for cyanate ester/bentonite nanocomposites by positron annihilation[J]. Journal of Applied Polymer Science, 2006, 102(2): 1509-1515.
[24]  ABRAMENKO A N, KALINICHENKO A S, BURSTER Y, et al. Determination of the thermal conductivity of foam aluminum[J]. Journal of Engineering Physics and Thermophysics, 1999, 72(3): 369-373.
[25]  PLACIDO E, ARDUINI-SCHUSTER M C, KUHN J. Thermal properties predictive model for insulating foams[J]. Infrared Physics & Technology, 2005, 46(3): 219-231.
[26]  SHE W, CHEN Y Q, ZHANG Y S, et al. Characterization and simulation of microstructure and thermal properties of foamed concrete[J]. Construction and Building Materials, 2013, 47: 1278-1291.
[27]  PRIVALKO V P, NOVIKOV V V. Model treatment of the heat conductivity of heterogeneous polymers[J]. Advances in Polymer Science, 1995, 119(1): 31-77.
[28]  NARKIS M, KENIG S, PUTERMAN M. Three-phase syntactic foams[J]. Polymer Composites, 1984, 5(2): 159-164.
[29]  BALCH D K, DUNAND D C. Load partitioning in aluminum syntactic foams containing ceramic microspheres[J]. Acta Materialia, 2006, 54(6): 1501-1511.
[30]  DOU Z Y, JIANG L T, WU G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia, 2007, 57(10): 945-948.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133