|
- 2016
碳/碳复合材料SiC/MoSi2/ZrO2涂层体系氧化烧蚀性能
|
Abstract:
抗氧化涂层技术是解决碳/碳复合材料高温抗氧化性的最有效技术途径之一。为了提高材料在1 800℃以上的高温抗氧化性能,首次采用包埋法、涂刷法和等离子喷涂法在碳/碳复合材料表面制备出SiC/MoSi2/ZrO2梯度抗氧化涂层体系。采用SEM/EDS、结合力和粗糙度测试对涂层表面及断面形貌进行微观分析,利用等离子风洞对整个涂层体系进行氧化试验。结果表明:基体、过渡层和高温抗氧化层之间结合力良好,高温抗氧化层厚度均匀、结构致密。经等离子风洞氧化600 s后,涂层表面温度达到1 850℃,氧化质量失重速率仅为3.15×10-6 g/(cm2·s)。表明SiC/MOSi2/ZrO2梯度抗氧化涂层体系在1 800℃以上的高温环境下具有很好的抗氧化性能。 Anti oxidation coating technology is one of the most effective ways to solve the high temperature oxidation resistance of carbon/carbon composites. In order to improve the high temperature oxidation resistance of materials above 1 800℃, a SiC/MoSi2/ZrO2 gradient oxidation resistant coating system was fabricated on surface of the carbon/carbon composites by the pack cementation method, slurry method and plasma spraying process. The surface and section morphologies of coating were observed by XRD/EDS, intensity and roughness testing. The total coating system is tested by plasma wind tunnel. Results show that the coating has a compact interfacial bonding strength among matrix, transition layer and high temperature oxidation resistance layer. High temperature oxidation resistance layer has uniform thickness and dense structure. After 600 s plasma wind tunnel oxidation, surface temperature of coating reaches up to 1 850℃. The oxidation mass loss rate is 3.15×10-6 g/(cm2·s). The SiC/MoSi2/ZrO2 gradient oxidation resistant coating system has good antioxidant capacity over 1 800℃.
[1] | SAVAGE G. Carbon-carbon composites[M]. London: Chapman and Hall, 1993: 193-225. |
[2] | FU Q G, LI H J, WANG Y J, et al. Multilayer oxidation protective coating for C/C composites from room temperature to 1 500℃[J]. Surface and Coatings Technology, 2010, 204: 1831-1835. |
[3] | AKIHIKO I, JUN E, TEIICHI K, et al. Eggshell and fur-like microstructures of yttrium silicate film prepared by laser chemical vapor deposition[J]. Materials Chemistry and Physics, 2011, 125: 242-246. |
[4] | LI H J, FU Q G, SHI X H, et al. SiC whisker-toughened SiC oxidation protective coating for carbon/carbon composites[J]. Carbon, 2006, 44(3): 602-605. |
[5] | FU Q G, LI H J, LI K Z, et al. SiC whisker-toughened MoSi2-SiC-Si coating to protect carbon/carbon composites against oxidation[J]. Carbon, 2006, 44(9): 1866-1869. |
[6] | LI H J, ZHANG Y L, FU Q G, et al. Oxidation behavior of SiC nanoparticle-SiC oxidation protective coating for carbon/carbon composites at 1 773 K[J]. Carbon, 2007, 45(13): 2704-2707. |
[7] | LI L, ZENG X R, LI H J, et al. Oxidation resistance of ZrO2 multi-layer coating for carbon/carbon composites[C]//International Conference on Carbon. Oviedo: [s. n.], 2003: 51-53. |
[8] | PADTURE N P, GELL M, JORDAN E H. Thermal barriercoatings for gas-turbine engine application[J]. Science, 2002, 296: 280-284. |
[9] | FEUERSTEIN A, KNAPP J, TAYLOR T, et al. Technical andeconomical aspects of current thermal barrier coatingsystems for gas turbine engines by thermal spray and EBPVD: A review[J]. Journal of Thermal Spray Technology, 2008, 17(2): 199-213. |
[10] | GELL M. Application opportunities for nanostructured materials and coatings[J]. Materails Science and Engnieernig, 1995, A204(2): 246-251. |
[11] | 曾毅, 张武装, 熊翔. C/C复合材料SiC/ZrB2-MoSi2复合涂层的抗氧化机制[J]. 复合材料学报, 2010, 27(3): 50-55. ZENG Y, ZHANG W Z, XIONG X. Anti-oxidation mechanisms of the SiC/ZrB2-MoSi2 coating on the carbon/carbon composite[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 50-55 (in Chinese). |
[12] | 丁传贤, 刘宣勇, 王国成. 等离子喷涂纳米氧化锆涂层研究进展[J]. 中国表面工程, 2009, 22(5): 1-6. DING C X, LIU X Y, WANG G C. Research progress in plasma sprayed nanostructured zirconia coatings[J]. China Surface Engineering, 2009, 22(5): 1-6 (in Chinese). |
[13] | 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1): 7-12. XU H B, GONG S K, LIU F S. Recent development in materials design of thermal barrier coatings for gas turbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 7-12 (in Chinese). |
[14] | 吴红丹, 裴大婷, 张锦化, 等. 纳米晶钇稳定氧化锆的制备及表征[J]. 武汉理工大学学报, 2011, 33(2): 9-14. WU H D, PEI D T, ZHANG J H, et al. Preparation and characterization of nano-crystallin yttria stabilized zirconia[J]. Journal of Wuhan University of Technology, 2011, 33(2): 9-14 (in Chinese). |
[15] | LIMA R S, MARPLE B K. Thermal spray coatings engineered from nanostructured ceramic agglomeratedpowders for structural, thermal barrier and biomedicalapplications: A review[J]. Journal of Thermal SprayTechnology, 2007, 16(1): 40-63. |
[16] | LIN X H, ZENG Y, ZHOU X M, et al. Microstructure of alumina-3% titania coatings by plasma spraying with nanostructured powders[J]. Materials Science and Engineering, 2003, 357(1-2): 228-234. |
[17] | SHEEHAN J E. Carbon-carbon composites[J]. Annual Review of Materials Science, 1994, 24(3): 19-44. |
[18] | WINDHORST T, BLOUNT G. Carbon-carbon composites: A summary of recent developments and application[J]. Materials and Design, 1997, 18(1): 11-15. |
[19] | FITZER E. The future of carbon-carbon composites[J]. Carbon, 1987, 25(2): 163-190. |
[20] | 林锋, 蒋显亮. 热障涂层的研究进展[J]. 功能材料, 2003, 34(3): 254-261. LIN F, JIANG X L. Reveiw on research of htermal barrier coaitng[J]. Journal of Funcitonal Materials, 2003, 34(3): 254-261 (in Chinese). |