全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

热氧老化对长玻纤增强尼龙10T复合材料静动态力学性能的影响
Effects of thermal-oxidative aging on static and dynamic mechanical properties of long glass fiber reinforced nylon 10T composites

DOI: 10.13801/j.cnki.fhclxb.20160127.002

Keywords: 热氧老化,长玻纤,尼龙10T,力学性能,活化能
thermal-oxidative aging
,long glass fiber,nylon10T,mechanical properties,activation energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过熔融共混法制备出长玻纤增强尼龙10T(LGF/PA10T)复合材料,并且采用DSC、DMA、SEM和力学性能测试等方法研究了不同热氧老化时间对LGF/PA10T复合材料静、动态力学性能的影响,并对LGF/PA10T复合材料发生玻璃化转变时所需活化能进行了计算。结果表明:虽然在老化初期PA10T分子链之间会发生微交联,材料的刚性略有增加,但在整个老化过程中,分子链断裂、分子量下降起主导作用,在240℃下老化50 d后,LGF/PA10T复合材料的拉伸强度保持率、弯曲强度保持率、缺口冲击强度保持率分别为4.9%、6.3%、9.4%。随着老化时间的增长,玻纤与PA10T基体之间的界面粘接作用减弱,玻璃化转变温度和阻尼性能下降。活化能计算结果表明热氧老化能够改变PA10T分子链的活动能力,降低了LGF/PA10T复合材料的热稳定性。 Long glass fiber reinforced nylon10T(LGF/PA10T) composites were prepared by melt blending method, and the effects of different thermal-oxidative aging time on the static and dynamic mechanical properties of LGF/PA10T composites were characterized by DSC, DMA, SEM and mechanical properties test, and the activation energy of glass transition of LGF/PA10T composites were calculated. The results indicate that PA10T molecular chains are a little cross-linked in the initial stage of aging, slightly increasing the rigid properties of material, but the molecular chains fracture and the reduction of molecular weight play a vital role in the whole aging process. After aging at 240℃ for 50 d, the tensile strength retention rate, flexural strength retention rate and notch impact strength retention rate of LGF/PA10T composites are 4.9%, 6.3% and 9.4%, respectively. With the increase of aging time, the interfacial interaction between glass fiber and PA10T matrix is weakened, both of the glass transition temperature and damping capacity decrease. The calculation results of activation energy show that thermal-oxidative aging can make the mobility of PA10T molecular chain changed and reduce the thermal stability of LGF/PA10T composites. 贵州省高层次创新型人才培养项目(黔科合人才[2015]4039号);贵州省优秀青年科技人才培养对象专项资金(黔科合人字[2015]26号);贵州省科学技术基金(黔科合LH字[2015]7096号)

References

[1]  易庆锋, 张勇, 陈健, 等. 耐高温聚酰胺研究进展[J]. 工程塑料应用, 2009, 37(11): 80-82. YI Q F, ZHANG Y, CHEN J, et al. Advance on heat-resisting polyamide[J]. Engineering Plastics Application, 2009, 37(11): 80-82 (in Chinese).
[2]  LI K F, FU P, LIU C L, et al. Synthesis, characterization and isothermal crystallization kinetics of poly (dodecamethylene terephthalamide)[J]. Advanced Materials Research, 2011, 284-286: 1894-1900.
[3]  ZHANG C, HUANG X, ZENG X, et al. Fluidity improvement of semiaromatic polyamides: Modification with oligomers[J]. Journal of Applied Polymer Science, 2014, 131(7): 2540-2540.
[4]  THOMASON J L. Structure-property relationships in glass-reinforced polyamide, Part 1: The effects of fiber content[J]. Polymer Composites, 2006, 27(5): 552-562.
[5]  FU X, HE B, CHEN X. Effects of compatibilizers on mechanical properties of long glass fiber-reinforced polypropylene[J]. Journal of Reinforced Plastics & Composites, 2009, 29(6): 936-949.
[6]  KARGERKOCSIS J, FRIEDRICH K, BAILEY R S. Fatigue crack propagation in short and long glass fiber reinforced injection-molded polypropylene composites[J]. Advanced Composite Materials, 1991, 1(2): 103-121.
[7]  THOMASON J L. Structure-property relationships in glass-reinforced polyamide, Part 3: Effects of hydrolysis ageing on the dimensional stability and performance of short glass-fiber-reinforced polyamide 66[J]. Polymer Composites, 2007, 28(3): 344-354.
[8]  HE J H, WAN Y Q, YU J Y. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers[J]. Fibers & Polymers, 2008, 9(2): 140-142.
[9]  樊威, 李嘉禄. 热氧老化对碳纤维织物增强聚合物基复合材料弯曲性能的影响[J]. 复合材料学报, 2015, 32(5): 1260-1270. FAN W, LI J L. Effects of thermo-oxidative aging on flexural properties of carbon fiber fabric reinforced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1260-1270 (in Chinese).
[10]  SHU Y, YE L, YANG T. Study on the long-term thermal-oxidative aging behavior of polyamide 6[J]. Journal of Applied Polymer Science, 2008, 110(2): 945-957.
[11]  American Society for Testing and Materials International. Standard test method for tensile properties of plastics: ASTM D638-10[S]. West Conshohocken: ASTM International, 2010.
[12]  American Society for Testing and Materials International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790-10[S]. West Conshohocken: ASTM International, 2010.
[13]  American Society for Testing and Materials International. Standard test methods for determining the izod pendulum impact resistance of plastics: ASTM D256-10[S]. West Conshohocken: ASTM International, 2010.
[14]  KEBRITCHI A, NEKOOMANESH M, MOHAMMADI F, et al. The interrelationships between microstructure and melting, crystallization and thermal degradation behaviors of fractionated ethylene/1-butene copolymer[J]. Iranian Polymer Journal, 2015, 24(4): 267-277.
[15]  金日光, 华幼卿. 高分子物理[M]. 北京: 化学工业出版社, 2006: 157-158. JIN R G, HUA Y Q. Polymer physics[M]. Beijing: Chemical Industry Press, 2006: 157-158 (in Chinese).
[16]  MENARD K P. Dynamic mechanical analysis: A practical introduction[M]. Boca Raton: CRC Press, 2008: 2-5.
[17]  BECKER O, SIMON G P, RIECKMANN T, et al. Dielectric relaxation spectroscopy of reactively blended amorphous poly(ethylene terephthalate)-poly(ethylene naphthalate) films[J]. Polymer, 2001, 42(5): 1921-1929.
[18]  FU S Y, LAUKE B. The elastic modulus of misaligned short-fiber-reinforced polymers[J]. Composites Science & Technology, 1998, 58(S3-4): 389-400.
[19]  FU S Y, LAUKE B. Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers[J]. Composites Science & Technology, 1996, 56(10): 1179-1190.
[20]  COLIN X, MARAIS C, VERDU J. Kinetic modelling and simulation of gravimetric curves: Application to the oxidation of bismaleimide and epoxy resins[J]. Polymer Degradation and Stability, 2002, 78(3): 545-553.
[21]  NOVITSKY T F, LANGE C A, MATHIAS L J, et al. Eutectic melting behavior of polyamide 10, T-co-6, T and 12, T-co-6, T copolyterephthalamides[J]. Polymer, 2010, 51(11): 2417-2425.
[22]  ZUO X, ZHANG K, LEI Y, et al. Influence of thermooxidative aging on the static and dynamic mechanical properties of long-glass-fiber-reinforced polyamide 6 composites[J]. Journal of Applied Polymer Science, 2014, 131(3): 1023-1031.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133