全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

SiCP表面镀Ti改性对SiCP/Al2014复合材料组织及力学性能的影响
Effects of Ti-coated SiCP on structures and mechanical properties of SiCP/Al2014 composites

DOI: 10.13801/j.cnki.fhclxb.20160308.004

Keywords: 复合材料,表面镀Ti,SiCP,体积分数,分散行为
composites
,Ti-coated,SiCP,volume fraction,dispersion behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盐浴镀的方法对SiCP进行表面镀Ti处理,并通过搅拌铸造的方法制备了表面镀Ti改性SiCP/Al2014复合材料。研究了镀Ti SiCP的尺寸和体积分数对SiCP/Al2014复合材料微观组织和力学性能的影响规律。结果表明:表面镀Ti处理能有效改善SiCP在Al基体中的分散均匀性;但随着SiCP体积分数提高,相同尺寸的镀Ti SiCP在Al基体分散均匀性逐渐变差,当SiCP体积分数相同时,其在Al基体中的分散均匀性随着SiCP尺寸的增加逐渐变好。SiCP尺寸相同时,SiCP/Al2014复合材料的常温拉伸强度随颗粒体积分数的增加先增大后减小,SiCP尺寸为5 μm和10 μm的SiCP/Al2014复合材料抗拉强度在颗粒的体积分数为4%时达到最高,分别为524 MPa和536 MPa;SiCP/Al2014复合材料的高温(493 K)抗拉强度随着SiCp体积分数增加而增大,SiCP尺寸为5 μm和10 μm的SiCP/Al2014复合材料抗拉强度在颗粒体积分数为6%时达到最高,分别为308 MPa和320 MPa。 The surface of SiCP was Ti-coated via melt salt, and the Ti-coated SiCP/Al2014 composites were fabricated by stir casting method. The effect law of size and volume fraction of Ti-coated SiCP on the microstructure and mechanical properties of SiCP/Al2014 composites were investigated. The results show that the Ti-coated processing could effectively improve the distribution uniformity of Ti-coated SiCP in Al matrix. When the size of Ti-coated SiCP keeps constant, the distribution uniformity of Ti-coated SiCP in Al matrix decreases with increasing volume fraction of SiCP. When volume fraction of SiCP keeps constant, the distribution uniformity of Ti-coated SiCP in Al matrix increases with increasing size of SiCP. When size of SiCP keeps constant, the tensile strength of SiCP/Al2014 composites at room temperature increases first then decreases with increasing volume fraction of particles. The SiCP/Al2014 composites with 4% volume fraction of particles possess the highest tensile strength, i.e., composites containing SiCP with sizes of 5 μm and 10 μm correspond to tensile strength of 524 MPa and 536 MPa, respectively. The tensile strength of SiCP/Al2014 composites at high temperature (493 K) increases with increasing volume fraction of SiCP. SiCP/Al composites with 6% volume fraction of particles possess the highest tensile strength. The composite with 5 μm-SiCP exhibits tensile strength of 308 MPa while that with 10 μm-SiCP exhibits tensile strength of 320 MPa when the volume fraction of particles is 6%. 国家“973”计划(2012CB619602);吉林大学大学生创新训练计划(2015430469)

References

[1]  SHI J L, YAN H G. Preparation of a functionally gradient aluminum alloy metal matrix composite using the technique of spray deposition[J]. Materials and Manufacturing Processes, 2011, 26(10): 1236-1241.
[2]  LIU Y B, LIM S C. Recent development in the fabrication of metal matrix particulate composites using powder metallurgy techniques[J]. Journal of Materials Science, 1994, 29(8): 1999-2007.
[3]  LLOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews, 1994, 39(1): 1-22.
[4]  DOEL T J A, BOWEN P. Tensile properties of particulate-reinforced metal matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(8): 655-665.
[5]  LEE K B, KWON H. Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles[J]. Metallurgical and Materials Transactions A, 2002, 33(2): 455-465.
[6]  沈珉, 郝培. 颗粒增强复合材料非理想界面刚度和有效模量的理论估计[J]. 复合材料学报, 2016, 33(1): 189-197. SHEN M, HAO P. Theoretical estimation of imperfect interfacial stiffness and effective modulus in particle reinforced composites[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 189-197 (in Chinese).
[7]  DOEL T J A, BOWEN P. Tensile properties of particulate-reinforced metal matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(8): 655-665.
[8]  DIKICI B, TEKMEN C. The effect of electroless Ni coating of SiC particles on the corrosion behavior of A356 based squeeze cast composite[J]. Journal of Mechanical Engineering, 2011, 57(1): 11-20.
[9]  WANG Y Q, ZHOU B L. Behaviour of coating on reinforcements in some metal matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1139-1145.
[10]  YANG D, QIU F, ZHAO W, et al. Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites[J]. Materials & Design, 2015, 87: 1100-1106.
[11]  SANNINO A P, RACK H J. Effect of reinforcement size on age hardening of PM 2009 Al-SiC 20 vol.% participate composites[J]. Journal of Materials Science, 1995, 30(17): 4316-4322.
[12]  RADO C, KALOGEROPOULOU S. Bonding and wetting in non-reactive metal: SiC systems: weak or strong interfaces[J]. Materials Science and Engineering A, 2000, 276(1): 195-202.
[13]  王爱琴, 倪增磊, 谢敬佩. 颗粒尺寸及分布均匀性对SiC/Al-30Si复合材料组织与性能的影响[J]. 粉末冶金技术, 2013, 31(1): 9-13. WANG A Q, NI Z L, XIE J P. Effects of particle size and its distribution homogenizationon the microstructure and mechanical properties of SiC/Al-30Si alloy composite[J]. Powder Metallurgy Technology, 2013, 31(1): 9-13 (in Chinese).
[14]  KADY O E, FATHY A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites[J]. Materials and Design, 2014, 54(2): 348-353.
[15]  陈素玲, 孙学杰. 金属基复合材料的分类及制造技术研究进展[J]. 电焊机, 2011, 42(7): 90-94. CHEN S L, SUN X J. Classification and manufacturing technologies of metal matrix composites[J]. Electric Welding Machine, 2011, 42(7): 90-94 (in Chinese).
[16]  张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4): 1-7. ZHANG D, ZHANG G D, LI Z Q. The current stateand trend of metal matrix composites[J]. Materials China, 2010, 29(4): 1-7 (in Chinese).
[17]  SUKUMARAN K, PILLAI S G K. The effects of magnesium additions on the structure and properties of Al-7Si-10 SiCP composites[J]. Journal of Materials Science, 1995, 30(6): 1469-1472.
[18]  LEON C A, DREW R A. The influence of nickel coating on the wettability of aluminum on ceramics[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(10): 1429-1432.
[19]  KINDER J D. Materials and corrosion[J]. Corrosion Books: ASM Handbook, 2002, 53(11): 858.
[20]  VALDEZ S, CAMPILLO B. Synthesis and microstructual characterization of Al-Mg alloy-SiC particle composite[J]. Materials Letters, 2008, 62(17): 2623-2625.
[21]  LI W, CHEN J. Effect of the SiC particle orientation anisotropy on the tensile properties of a spray-formed SiCP/Al-Si composite[J]. Strength of Materials, 2014, 46(2): 221-228.
[22]  LEE J C, BYUN J Y. Effect of various processing methods on the interfacial reactions in SiCP/2024 Al composites[J]. Acta Materialia, 1997, 45(12): 5303-5315.
[23]  邓陈虹, 葛启录, 范爱琴. 粉末冶金金属基复合材料的研究现状及发展趋势[J]. 粉末冶金工业, 2011, 21(1): 54-58. DENG C H, GE Q L, FAN A Q. Present research status and trend of metal matrix composites by powder metallurgy[J]. Powder Metallurgy Industry, 2011, 21(1): 54-58 (in Chinese).
[24]  于敬宇, 李玉龙, 周宏霞, 等. 颗粒尺寸对颗粒增强型金属基复合材料动态特性的影响[J]. 复合材料学报, 2005, 22(5): 31-38. YU J Y, LI Y L, ZHOU H X, et al. Influence of particle size on the dynamic behavior of PMMCs[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 31-38 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133