|
- 2016
有机黏土对碳纤维/聚醚砜-环氧复合材料层间断裂韧性的影响
|
Abstract:
采用溶剂法和热熔法制备了不同有机黏土质量分数的有机黏土/聚醚砜(PES)-环氧复合材料,通过对其微观形态和力学性能的研究,揭示了复合材料的增韧机制。在有机黏土/PES-环氧复合材料中添加T800H(12K)碳纤维,制备了T800H-有机黏土/PES-环氧复合材料预浸料单向带,采用热压罐工艺制备了复合材料单向板,对其I型、II型层间断裂韧性进行了研究。结果表明:T800H-有机黏土/PES-环氧复合材料的层间断裂韧性随有机黏土质量分数变化趋势与有机黏土/PES-环氧复合材料的断裂韧性趋势一致,证明了增韧机制的正确性。 Organoclay/polyethersulfone(PES)-epoxy composites with different organoclay mass fractions were fabricated by solvent method and melting method. The microstructures and mechanical properties of the composites were studied. The toughening mechanisms of composites were revealed. T800H-organoclay/PES-epoxy composite prepreg unidirectional tape was prepared by adding T800H(12K) carbon fiber into organoclay/PES-epoxy composites. Composite unidirectional laminates were prepared with autoclave process. The mode I and mode II interlaminar fracture toughness of T800H-organoclay/PES-epoxy composites were studied. Results show that the interlaminar fracture toughness of T800H-organoclay/PES-epoxy composites and organoclay/PES-epoxy composites incorporated with organoclay mass fraction show similar trends, which supportes the proposed toughening mechanism. 国家商用飞机制造工程技术研究中心创新基金(SAMC13-JS-15-034)
[1] | BOO W J, SUN L, LIU J, et al. Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(12): 1459-1469. |
[2] | American Society for Tensting and Materials International. Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials: ASTM D5045-99[S]. Philadelphia: ASTM International, 2007. |
[3] | 中国航空工业总公司第六二一研究所, 北京航空航天大学, 西北工业大学. 碳纤维复合材料层合板I型层间断裂韧性 GIC试验方法: HB 7402-1996[S]. 北京: 航空工业出版社, 1996. AVIC Bejing Institute of Aeronautical Materials, Beihang University, Northwestern Polytechnical University. Test method for mode I interlaminar fracture toughness GIC of carbon fiber-reinforced composites laminates: HB 7402-1996[S]. Beijing: Aviation Industry Press, 1996 (in Chinese). |
[4] | ISIK I, YILMAZER U, BAYRAM G. Impact modified epoxy/montmorillonite nanocomposites: Synthesis and characterization[J]. Polymer, 2003, 44(20): 6371-6377. |
[5] | HUANG X, LEWIS S, BRITTAIN W J, et al. Synthesis of polycarbonate-layered silicate nanocomposites via cyclic oligomers[J]. Macromolecules, 2000, 33(6): 2000-2004. |
[6] | BUCKNALL C B, PARTRIDGE I K. Phase separation in epoxy resins containing polyethersulphone[J]. Polymer, 1983, 24(5): 639-644. |
[7] | WANG Y, MA X, ZHANG B. Preparation and properties of organoclay/polyethersulphone/epoxy hybrid nanocomposites[J]. Polymer Composites, 2015, 36(4): 767-774. |
[8] | LIU W, HOA S V, PUGH M. Organoclay-modified high performance epoxy nanocomposites[J]. Composites Science and Technology, 2005, 65(2): 307-316. |
[9] | THOSTENSON E T, LI C, CHOU T W. Nanocomposites in context[J]. Composites Science and Technology, 2005, 65(3): 491-516. |
[10] | ALEXANDRE M, DUBOIS P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering R: Reports, 2000, 28(1): 1-63. |
[11] | 秦浩, 王洋, 孟姗姗, 等. 多壁碳纳米管/PES环氧树脂复合材料的制备及力学性能[J]. 复合材料学报, 2014, 31(4): 931-936. QIN H, WANG Y, MENG S S, et al. Preparation and mechanical properties of multi-walled carbon nanotubes/polyethersulphone epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 931-936 (in Chinese). |
[12] | LEE J, YEE A F. Micro-mechanical deformation mechanisms in the fracture of hybrid-particulate composites based on glass beads, rubber and epoxies[J]. Polymer Engineering & Science, 2000, 40(12): 2457-2470. |
[13] | ASIF A, LEENA K, LAKSHMANA R V, et al. Hydroxyl terminated poly (ether ether ketone) with pendant methyl group-toughened epoxy clay ternary nanocomposites: Preparation, morphology, and thermomechanical properties[J]. Journal of Applied Polymer Science, 2007, 106(5): 2936-2946. |
[14] | RATNA D, BECKER O, KRISHNAMURTHY R, et al. Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate[J]. Polymer, 2003, 44(24): 7449-7457. |
[15] | PARK J H, JANA S C. The relationship between nano-and micro-structures and mechanical properties in PMMA-epoxy-nanoclay composites[J]. Polymer, 2003, 44(7): 2091-2100. |
[16] | FR?HLICH J, THOMANN R, GRYSHCHUK O, et al. High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber[J]. Journal of Applied Polymer Science, 2004, 92(5): 3088-3096. |
[17] | SáNCHEZ-SáEZ S, BARBERO E, ZAERA R, et al. Compression after impact of thin composite laminates[J]. Composites Science and Technology, 2005, 65(13): 1911-1919. |
[18] | SIGL L S. Microcrack toughening in brittle materials containing weak and strong interfaces[J]. Acta Materialia, 1996, 44(9): 3599-3609. |
[19] | 中国航空工业总公司第六二一研究所, 北京航空航天大学, 西北工业大学. 碳纤维复合材料层合板II型层间断裂韧性 GIIC试验方法: HB 7403-1996[S]. 北京: 航空工业出版社, 1996. AVIC Bejing Institute of Aeronautical Materials, Beihang University, Northwestern Polytechnical University. Test method for mode II interlaminar fracture toughness G IIC of carbon fiber-reinforced composites laminates: HB 7403-1996[S]. Beijing: Aviation Industry Press, 1996 (in Chinese). |