|
- 2016
溶胶配比对碳纤维增强炭气凝胶隔热复合材料力学性能的影响
|
Abstract:
以异丙醇(I)为溶剂、 六次甲基四胺(H)为催化剂, 配制间苯二酚(R)-糠醛(F)的醇溶胶, 经浸渍纤维预制件、凝胶老化、超临界干燥和炭化制得碳纤维增强炭气凝胶隔热复合材料。研究了溶胶配比对碳纤维增强炭气凝胶隔热复合材料密度、微观结构和力学性能的影响规律。结果表明:随着异丙醇与间苯二酚物质的量之比增大, 碳纤维增强炭气凝胶隔热复合材料的密度逐渐降低, 基体炭气凝胶内及与碳纤维形成的界面内孔径增大, 大孔数量增多, 碳纤维增强炭气凝胶隔热复合材料的强度降低。当异丙醇与间苯二酚物质的量之比由18增加到28时, 压缩强度由2.498 MPa(应变10%)降至0.716 MPa(应变10%), 拉伸强度由2.019 MPa降至1.001 MPa, 弯曲强度由3.984 MPa降至1.818 MPa。随着六次甲基四胺与间苯二酚物质的量之比增大, 碳纤维增强炭气凝胶隔热复合材料的密度先增大后减小, 基体炭气凝胶内及与碳纤维形成的界面内孔径先减小后增大, 大孔数量先减少后增加, 碳纤维增强炭气凝胶隔热复合材料的强度先增大后减小。当六次甲基四胺与间苯二酚物质的量之比为0.008 5时, 碳纤维增强炭气凝胶隔热复合材料的密度最大, 强度最大, 其压缩强度为1.066 MPa(应变10%), 拉伸强度为1.256 MPa, 弯曲强度为3.556 MPa。 Carbon fiber reinforced carbon aerogel composites were prepared by impregnating the fiber preform, gel aging, supercritical drying and carbonization. Resorcinol (R)-furfural (F) alcohol sol was synthesized by isopropanol (I) as solvent, hexamethylenetetramine (H) as catalyst. The effects of sol proportion on densities, microstructures and mechanical properties of carbon fiber reinforced carbon aerogel insulation composites were investigated. The results show that the densities of carbon fiber reinforced carbon aerogel insulation composites decrease gradually, the pores diameter and the amount of large pores in matrix carbon aerogels and the interface formed with carbon fiber increase, the strength of carbon fiber reinforced carbon aerogel insulation composites decreases with the increases of amount of substance ratio for isopropanol and resorcinol. When isopropanol and resorcinol amount of substance ratio increases from 18 to 28, the compressive strength decreases from 2.498 MPa (strain 10%)to 0.716 MPa (strain 10%), tensile strenghth decreases from 2.019 MPa to 1.001 MPa, bending strength decreases from 3.984 MPa to 1.818 MPa. The densities of carbon fiber reinforced carbon aerogel insulation composites increases firstly and then decreases, the pores diameter and the the amount of large pores in matrix carbon aerogels and interface formed with carbon fiber decreases firstly and then increases, the strength of carbon fiber reinforced carbon aerogel insulation composites increases fistly and then decreases with the increase of amount of substance ratio for hexamethylenetetramine and resorcinol. The densities and the strength of carbon fiber reinforced carbon aerogel insulation composites are biggest when amount of substance ratio for hexamethylenetetramine and resorcinol is 0.008 5, the compressive strength is 1.066 MPa (strain 10%), the tensile strenghth is 1.256 MPa, bending strength is 3.556 MPa. 国家自然科学基金(51302317)
[1] | FENG J Z, ZHANG C R, FENG J. Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforecement[J]. Materials Letters, 2012, 67(1): 266-268. |
[2] | 冯坚, 冯军宗, 姜勇刚, 等. 碳气凝胶的传热规律及其在防隔热中的应用[J]. 宇航材料工艺, 2012, 42(2): 4. FENG J, FENG J Z, JIANG Y G, et al. Thermal tansport in carbon aerogels and their applications in thermal protection system[J]. Arospace Materials&Technology, 2012, 42(2): 4 (in Chinese). |
[3] | HRUBESH L W. Lightweight, high strength carbon aerogel composites and method of fabrication: 20030134916A1[P]. 2002-01-15. |
[4] | YANG J, LI S K, LUO Y M, et al. Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading[J]. Carbon, 2011, 49(5): 1542-1549. |
[5] | 刘斌, 邹军锋, 詹万初, 等. 一种纤维复合炭气凝胶材料及其制备方法: CN101698591A[P]. 2010-04-28. LIU B, ZOU J F, ZHAN W C, et al. A fiber reinforced carbon aerogel composite and it's preparation method: CN101698591A[P]. 2010-04-28 (in Chinese). |
[6] | FU R W, ZHENG B, LIU J, et al. Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying in isopropanol[J]. Journal of Materials Research, 2003, 18(12): 2765-2773. |
[7] | LEVENTIS N, CHANDRASEKARAN N, SADEKAR A G, et al. The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides[J]. Journal of Materials Chemistry, 2010, 20(35): 7456-7471. |
[8] | 徐天恒. 聚硅氧烷转化SiOC陶瓷微观结构的演变与改性[D]. 长沙: 国防科技大学, 2011. XU T H. Structure evolutions and modifications of SiOC ceramics dericed from polysiloxane[D]. Changsha: National University of Defense Technology, 2011 (in Chinese). |
[9] | WU D C, FU R W, ZHANG S T, et al. The preparation of carbon aerogels based upon the gelation of resorcinol-furfural in isopropanol with organic base catalyst[J]. Journal of Non-Crystalline Solids, 2004, 336(1): 26-31. |
[10] | 习年生, 于志成, 陶春虎. 纤维增强复合材料的损伤特征及失效分析方法[J]. 航空材料学报, 2000, 20(2): 55-63. XI N S, YU Z C, TAO C H. Damage characterization and failure analysis in fiber reinforced composites[J]. Journal of Aeronautical Materials, 2000, 20(2): 55-63 (in Chinese). |
[11] | 冯坚, 高庆福, 张长瑞, 等. SiO2溶胶配比对气凝胶隔热复合材料力学性能的影响[J]. 复合材料学报, 2010, 27(6): 180-183. FENG J, GAO Q F, ZHANG C R, et al. Effect of SiO2 sol proportion on the mechanical properties of aerogel insulation composites[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 180-183 (in Chinese). |
[12] | FENG J Z, ZHANG C R, FENG J, et al. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4796-4803. |
[13] | 符若文, 吴丁财. 常压干燥法制备有机气凝胶和炭气凝胶的方法: CN1199854C[P]. 2004-03-10. FU R W, WU D C. Method for preparing organic aerogel and carbon aerogel by atmospheric drying method: CN1199854C[P]. 2004-03-10 (in Chinese). |
[14] | 代少俊. 高性能纤维复合材料[M]. 上海: 华东理工大学出版社, 2003: 45-46. DAI S J. High performance fiber composite materials[M]. Shanghai: East China University of Science and Technology Press, 2003: 45-46 (in Chinese). |