|
- 2016
碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420高温力学性能(I)——拉伸和层间剪切性能
|
Abstract:
研究了碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420的高温力学性能, 重点揭示了MT300/KH420的[0°]7、[0°]14 和[±45°/0°/90°/+45°/0°2]s层合板在常温~500 ℃的拉伸和层间剪切性能的变化规律。结果表明:在350 ℃以内,[0°]7层合板拉伸强度随温度升高有所提高, 拉伸模量几乎不变, 在420 ℃时拉伸强度和模量均出现明显下降, 在500 ℃时分别保持在65%和83%以上, 表现出优异的高温拉伸性能。MT300/KH420的[0°]14层合板层间剪切强度在常温~420 ℃随温度升高不断降低至52.8%, 在高温下呈现出黏弹效应, 且在420 ℃时最为明显。相比于单向层合板, [±45°/0°/90°/+45°/0°2]s多向层合板高温力学性能较为稳定, 且由纤维控制的纵向试件力学性能受温度影响较小。 The high-temperature mechanical properties of carbon fiber reinforced polyimide resin matrix composites MT300/KH420 were studied, during which the tensile and interlaminar shear performance variation rule of MT300/KH420 laminates with[0°]7, [0°]14 and [±45°/0°/90°/+45°/0°2]s fiber orientations were especially analyzed at temperature ranging from ambient temperature to 500 ℃. Results show that tensile strength of [0°]7 laminate shows an increase while tensile modulus changes little with the increase of temperature until 350 ℃. At 420 ℃ tensile strength and modulus reduce significantly, and at 500 ℃, 65% and 83% of their pristine values remain, exhibiting an excellent high-temperature tensile property. As temperature rises, interlaminar shear strength of MT300/KH420 laminates with[0°]14 degrades continuously from ambient temperature to 420 ℃ where a retention rate of 52.8% is observed. A viscoelastic effect occurs at high temperature, especially at 420 ℃ it turns to be the most severest. Compared with unidirectional laminates, [±45°/0°/90°/+45°/0°2]s multidirectional laminates show more stable high-temperature mechanical properties. Mechanical properties of fiber-dominated longitudinal specimen are less dependent on temperature. 国家自然科学基金(11272020)
[1] | 汪源龙, 程小全, 范舟, 等. 国产 CCF300/双马树脂层合板高温拉伸与压缩性能试验研究[J]. 复合材料学报, 2011, 28(3): 180-184. WANG Y L, CHENG X Q, FAN Z, et al. Experimental study on tensile and compressive properties of domestic CCF300/bismaleimide laminates at high temperature[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 180-184 (in Chinese). |
[2] | SANGHAMITRA S, DiNESH K R, BANKIM C R, et al. An assessment of mechanical behavior and fractography study of glass-epoxy composites at different temperatures and loading speeds[J]. Materials & Design, 2014, 64: 160-165. |
[3] | WANG Y C, WONG P M H, KODUR V. An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures[J]. Composite Structures, 2007, 80(1): 131-140. |
[4] | 全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料层间剪切强度试验方法: JC/T 773—1996[S]. 北京: 建材工业出版社, 1996. National Fiber Reinforced Plastics Standardization Technical Committee. Test method for interply shear strength of unidirectional fiber reinforced plastics: JC/T 773—1996[S]. Beijing: China Building Materials Press, 1996 (in Chinese). |
[5] | 全国纤维增强塑料标准化技术委员会. 纤维增强塑料高低温力学性能试验准则: GB/T 9979—2005[S]. 北京: 中国标准出版社, 2005. National Fiber Reinforced Plastics Standardization Technical Committee. Guide rule of test for mechanical properties of fiber-reinforced plastics at elevated and reduced temperature: GB/T 9979—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). |
[6] | 冼杏娟, 李端义. 复合材料破坏分析及微观图谱[M]. 北京: 科学出版社, 1993: 90. XIAN X J, LI D Y. Damage analysis and microstructure of composite materials[M], Beijing: Science Press, 1993: 90 (in Chinese). |
[7] | 刘强, 王晓亮, 蒋蔚, 等. BMP系列热固性聚酰亚胺树脂基复合材料的应用进展[J]. 航空制造技术, 2009(增刊1): 22-24. LIU Q, WANG X L, JIANG W, et al. Application progress of BMP thermosetting polyimide resin matrix composites[J]. Aeronautical Manufacturing Technology, 2009(Suppl.1): 22-24 (in Chinese). |
[8] | WANG K, YOUNG B, SMITH S T. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures[J]. Engineering Structures, 2011, 33(7): 2154-2161. |
[9] | CHARLES R B. Composite materials at high temperatures: AD-A201[R]. Monterey: Naval, Postgraduate School, 1988. |
[10] | SETHI S, RATHORE D K, RAY B C. Effects of temperature and loading speed on interface-dominated strength in fibre/polymer composites: An evaluation for in-situ environment[J]. Materials & Design, 2015, 65: 617-626. |
[11] | MOHAMMAD H H, PRIYANK U, SAMIT R, et al. The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature[J]. Composite Structures, 2014, 108: 57-64. |
[12] | 赵伟栋, 王磊, 潘玲英, 等. 聚酰亚胺复合材料研究进展[J]. 宇航材料工艺, 2013, 43(4): 14-19. ZHAO W D, WANG L, PAN L Y, et al. Recent advances in polyimides matrix structural composites[J]. Aerospace Materials & Technology, 2013, 43(4): 14-19 (in Chinese). |
[13] | MORITA W H. Graphite/polyimide state of the art panel discussion[C]//The Proceedings of the CASTS Project Technical Symposium. [S.l.]:[s.n.], 1979: 441-445. |
[14] | 全国纤维增强塑料标准化技术委员会. 定向纤维增强塑料拉伸性能试验方法: GB/T 3354—1999[S]. 北京: 中国标准出版社, 1999. National Fiber Reinforced Plastics Standardization Technical Committee. Test method for tensile properties of oriented fiber reinforced plastics: GB/T 3354—1999[S]. Beijing: Standards Press of China, 1999 (in Chinese). |
[15] | 张骏华. 复合材料结构设计指南[M]. 北京: 宇航出版社, 1999: 22, 26. ZHANG J H. Guide for structural design of composite materials[M]. Beijing: China Astronautic Publishing House, 1999: 22, 26 (in Chinese). |