|
- 2018
Cu/还原氧化石墨烯光催化复合材料的制备及其光催化性能
|
Abstract:
以乙酸铜和氧化石墨烯(GO)为原料,抗坏血酸为还原剂,采用液相化学法合成Cu/还原氧化石墨烯(Cu/RGO)复合材料。通过XRD、SEM、TEM、FTIR和Raman对材料结构及形貌进行表征,并考察Cu/RGO复合材料在H2O2辅助作用下对亚甲基蓝(MB)的光催化作用。结果表明:Cu颗粒均匀分布在RGO片层上,相比于纯Cu,Cu/RGO复合材料的光催化性能明显提高,Cu/RGO复合材料用量为0.06 g/L时,对MB显示出最佳的催化效果,200 min内脱色率达到了92.5%,经过5次循环后脱色率仍有88.0%以上。 Cu/reduced graphene oxide (RGO) photocatalytic composites were prepared through the liquid phase chemical method by using cupric acetate and graphene oxide (GO) as the precursors and ascorbic acid as the reducing agent. The Cu/RGO composites were characterized by XRD, SEM, TEM, FTIR and Raman, the photocatalytic performance of composites toward methylene blue was investigated under the aid of H2O2. The results show that the Cu particles uniformly distribute on the RGO sheets, and the Cu/RGO composite exhibites good catalytic activity for the decolorization of methylene blue. The Cu/RGO composite shows the best catalytic performance for MB when the composite dosage is 0.06 g/L, the decolorization rate reach 92.5% in 200 min, and the decolorization rate remains 88.0% after 5 cycles. 国家自然科学基金(21564002;21272045);贵州大学SRT基金((2015)159)
[1] | ALMEIDAA B M, JR M A M, BETTINI J, et al. A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity[J]. Applied Surface Science, 2015, 324:419-431. |
[2] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. |
[3] | XIANG Q J, YU J G, JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews, 2012, 41(2):782-796. |
[4] | HUANG X, QI X Y, BOEYAB F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2):666-686. |
[5] | LIU S, TIAN J, WANG L, et al. One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes[J]. Catalysisence & Technology, 2011, 2(2):339-344. |
[6] | XU T, ZHANG L, CHENG H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Applied Catalysis B:Environmental, 2011, 101(3-4):382-387. |
[7] | XIE G, CHENG J, LI Y, et al. Fluorescent graphene oxide composites synthesis and its biocompatibility study[J]. Journal of Materials Chemistry, 2012, 22(18):9308-9314. |
[8] | STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565. |
[9] | SZABO T, TOMBACZ E, ILLES E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon, 2006, 44(3):537-545. |
[10] | ZHANG N, LIU S, FU X, et al. Synthesis of M@TiO2 (M=Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivit[J]. The Journal of Physical Chemistry C, 2011, 115(18):9136-9145. |
[11] | WILLANDER M, HASAN K U, NUR O, et al. Recent progress on growth and device development of ZnO and CuO nanostructures and graphene nanosheets[J]. Journal of Materials Chemistry, 2012, 22(6):2337-2350. |
[12] | LI J, CHEN C L, ZHANG R, et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions[J]. Chemistry an Asian Journal, 2015, 10(6):1410-1417. |
[13] | LEE K H, HAN S W, KWON K Y, et al. Systematic analysis of palladium-graphene nanocomposites and their catalytic applications in Sonogashira reaction[J]. Journal of Colloid & Interface Science, 2013, 403(4):127-133. |
[14] | ZHANG X Y, LI H P, CUI X L, et al. Graphene/TiO2 nanocomposites:Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry, 2010, 20(14):2801-2806. |
[15] | NOSAKA Y, KOMORI S, YAWATA K, et al. Photocatalytic OH radical formation in TiO2 aqueous suspension studied by several detection methods[J]. Physical Chemistry Chemical Physics, 2003, 5(20):4731-4735. |
[16] | MARIEN C B D, COTTINEAU T, ROBERT D, et al. TiO2 Nanotube arrays:Influence of tube length on the photo-catalytic degradation of Paraquat[J]. Applied Catalysis B:Environmental, 2016, 194(5):1-6. |
[17] | 刘波, 孙红娟, 彭同江. 石墨烯分子振动模式因子群分析与密度泛函计算[J]. 物理化学学报, 2012, 28(4):799-804.LIU B, SUN H J, PENG T J. Factor group analysis of molecular vibrational modes of graphene and density functional calculations[J]. Acta Physico-Chimica Sinica, 2012, 28(4):799-804(in Chinese). |
[18] | ZHAO D L, YANG X, CHEN C L, et al. Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2[J]. Journal of Colloid and Interface Science, 2013, 398:234-239. |
[19] | 李小娟, 黄斌, 李小飞, 等. TiO2-Fe3O4/MIL-101(Cr)磁性复合光催化材料的制备及其光催化性能[J]. 复合材料学报, 2017, 34(7):1596-1602. LI X J, HUANG B, LI X F, et al. Preparation and photo-catalytic activity of magnetic TiO2-Fe3O4/MIL-101(Cr) composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1596-1602(in Chinese). |
[20] | PAULUS U A, SCHMIDT T J, GASTEIGER H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst:A thin-film rotating ring-disk electrode study[J]. Journal of Electroanalytical Chemistry, 2001, 495(2):134-145. |
[21] | SARDAR R, BEASLEY C A, MURRAY R W. Interfacial ion transfers between a monolayer phase of cationic Au nanoparticles and contacting organic solvent[J]. Journal of the American Chemical Society, 2010, 132(6):2058-2063. |
[22] | HU Y, YANG X, CAO S, et al. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst[J]. Applied Surface Science, 2017, 400:148-153. |
[23] | LI H, SU Z, HU S, et al. Free-standing and flexible Cu/Cu2O/CuO heterojunction net:A novel material as cost-effective and easily recycled visible-light photocatalyst[J]. Applied Catalysis B:Environmental, 2017, 207:134-142. |
[24] | CHOI J, OH H, HAN S W, et al. Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule[J]. Current Applied Physics, 2017, 17(2):137-145. |
[25] | XU H, FENG J X, TONG Y, et al. Cu2O-Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media[J]. ACS Catalysis, 2017, 7(2):986-991. |
[26] | 邵姣婧, 郑德一, 李政杰, 等. 二维纳米材料的自上而下制备:可控液相剥离[J]. 新型炭材料, 2016, 31(2):97-114. SHAO J J, ZHENG D Y, LI Z J, et al. Top-down fabrication of two-dimensional nanomaterials:Controllable liquid phase exfoliation[J]. New Carbon Materials, 2016, 31(2):97-114(in Chinese). |
[27] | SONG S, BEI C, WU N, et al. Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants[J]. Applied Catalysis B:Environmental, 2016, 181:71-78. |
[28] | SHIRZAD-SIBONI M, JONIDI-JAFARI A, FARZADKIA M, et al. Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide:Kinetics and reaction pathways[J]. Journal of Environmental Management, 2017, 186:1-11. |
[29] | GAO Z Y, LIU N, WU D P, et al. Graphene-CdS com-posite, synthesis and enhanced photocatalytic activity[J]. Applied Surface Science, 2012, 258:2473-2478. |
[30] | GUO S, WEN D, ZHAI Y, et al. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet:One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing[J]. ACS Nano, 2010, 4(7):3959-3968. |
[31] | QIU B C, XING M Y, ZHANG J L. Mesoporous TiO2 nanocrystals grown in-situ on graphene aerogels for high photocatalysis and lithium ion batteries[J]. American Chemical Society, 2014, 136(16):5852-5855. |
[32] | SUN L, WANG G, HAO R, et al. Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B[J]. Applied Surface Science, 2015, 358:91-99. |