全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

含雷击热-力耦合损伤复合材料层压板拉伸剩余强度预测
Tensile residual strength prediction of composite laminate with lightning strike thermal-mechanical coupling damage

DOI: 10.13801/j.cnki.fhclxb.20160328.004

Keywords: 雷击热-力耦合损伤,复合材料层压板,渐进损伤模型,连续介质损伤力学,唯象分析法,拉伸剩余强度
lightning strike thermal-mechanical coupling damage
,composite laminate,progressive damage model,continuum damage mechanics,phenomenological analysis method,tensile residual strength

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了对含雷击热-力耦合损伤复合材料层压板的剩余强度进行预测,基于连续介质损伤力学法(CDM)和唯象分析法,建立了表征复合材料雷击热-力耦合损伤的刚度矩阵渐进损伤退化模型。基于该模型,通过ABAQUS有限元仿真软件,建立了含雷击热-力耦合损伤的复合材料层压板结构三维模型。结合UMAT子程序,完成了拉伸载荷下的剩余强度预测。结果表明:通过与试验对比,仿真结果与试验结果取得了良好的一致性。本文所建立模型,能够有效进行含雷击热-力耦合损伤复合材料层压板结构拉伸剩余强度预测。 For the sake of predicting residual strength of composite laminate with lightning strike thermal-mechanical coupling damage, stiffness matrix progressive damage degradation model was constructed to characterize composite lightning strike thermal-mechanical coupling damage based on continuum damage mechanics (CDM) method and phenomenological analysis method. An three dimensional model of composite laminate structure with lightning strike thermal-mechanical coupling damage was established based on progressive damage model and ABAQUS finite element simulation software. Combined with UMAT subroutine, residual strength prediction was accomplished under tensile load. The results show that excellent agreement between test data and numerical results is observed. The model constructed in this paper is capable to predict the tensile residual strength of composite laminate with lightning strike thermal-mechanical coupling damage. 国家自然科学基金(51477132)

References

[1]  GAGNE M, THERRIAULT D. Lighting strike protection of composites[J]. Progress in Aerospace Sciences, 2014, 64(1):1-16.
[2]  CHEMARTIN L, LALANDE P, ELIASET P Q. Direct effects of lightning on aircraft structure:Analysis of the thermal, electrical and mechanical constraints[J]. Journal Aerospace Lab, 2012(5):1-15.
[3]  HIRANO Y, KATSUMATA S, IWAHORI Y. Artificial lighting on graphite/epoxy composite laminate[J]. Compo-site:Part A, 2010, 41(10):1461-1470.
[4]  LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics[J]. Materials Science and Engineering A, 2008, 485(1-2):711-717.
[5]  TSERPES K I, LABEAS G, PAPANIKOS P. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B:Engineering, 2002, 33(7):521-529.
[6]  WANG Y, TONG M, ZHU S. Three dimensional continuum damage mechanics model of progressive failure analysis in fiber-reinforced composite laminates[C]//50th AIAA/ASME/ASCE/AHS Structures, Structure Dynamics, and Materials Conference. California:Palm Springs, 2009:1-8.
[7]  HUANG C H, LEE Y J. Experiments and simulation of the static contact crush of composite laminated plates[J]. Composite Structures, 2003, 61(3):265-270.
[8]  MAIMI P, CAMANHO P P, MAYUGO J A. A continuum damage model for composite laminates:Part Ⅱ-Computational implementation and validation[J]. Mechanics of Materials, 2007, 39(10):909-919.
[9]  BAI Y, KELLER T, VALLEE T. Modeling of thermo-physical properties and thermal responses for FRP composites in fire[C]. Asia-Pacific Conference on FRP in Structures. APFIS, 2007:645-650.
[10]  UMAN M A, RAKOV V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences, 2003, 39(1):61-81.
[11]  LEE J H, KIM K S, KIM H. Determination of kinetic parameters during the thermal decomposition of epoxy/carbon fiber composite material[J]. Korean Journal of Chemical Engineering, 2013, 30(4):955-962.
[12]  ABDELAL G, MURPHY A. Nonlinear numerical modeling of lightning strike effect on composite panels with temperature dependent material properties[J]. Composite Structures, 2014, 109(1):268-278.
[13]  COSTA J, TURON A, TRIAS D. A progressive damage model for unidirectional fiber-reinforced composites based on fiber fragmentation. Part Ⅱ:Stiffness reduction in environment sensitive fibers under fatigue[J]. Composites Science and Technology, 2005, 65(14):2269-2275.
[14]  FERABOLI P, KAWAKAMI H. Damage of carbon/epoxy composite plates subjected to mechanical impact and simulated lightning[J]. Journal of Aircraft, 2010, 47(3):999-1012.
[15]  FERABOLI P, MILLER M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike[J]. Composite Part A, 2009, 40(6-7):954-967.
[16]  OGASAWARA T, HIRANO Y, YOSHIMURA A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lighting current[J]. Composite Part A, 2010, 41(8):973-981.
[17]  DONG Q, GUO Y L, SUN X C. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike[J]. Polymer, 2015, 56 (1):385-394.
[18]  MUNOZ R, DELGADO S, GONZALEZ C. Modeling lightning impact thermo-mechanical damage on composite materials[J]. Applied Composite Materials, 2014, 21(1):149-164.
[19]  KAWAKAMI H, FERABOLI P. Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites[J]. Composites:Part A, 2011, 42(9):1247-1262.
[20]  WANG F S, DING N, LIU Z Q. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike[J]. Composite Structures, 2014, 117(2):222-233.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133