|
- 2017
微晶纤维素/聚丁二酸丁二醇酯复合材料的流变行为
|
Abstract:
采用熔融共混法制备了微晶纤维素/聚丁二酸丁二醇酯(MCC/PBS)复合材料,用高级毛细管流变仪和旋转流变仪分别测定复合材料的稳态流变性能和动态流变性能,研究了不同MCC含量、不同温度对复合材料流变行为的影响。结果表明,复合材料的黏度与剪切速率的流变曲线符合幂律流体的特征,可以用幂律模型对其进行拟合;复合材料的黏度与温度的关系可用Arrhenius方程对其进行描述。在线性黏弹区,复合材料的储能模量(G')维持恒定,当应变(γ)超过临界值(γc)时,复合材料进入非线性黏弹区,出现了“Payne”效应,并且随着MCC含量的增加,γc下降。在角频率(ω)扫描范围内,复合材料的储能模量(G')、损耗模量(G")和复数黏度|η*|均随着MCC含量的增加而增大。在相同的MCC含量下,G"的值始终大于G'的值,损耗因子(tanδ)均大于1。在低频区,G'出现第二平台。MCC/PBS复合材料加工流变特性的研究,对指导MCC/PBS复合材料的成型加工具有一定的价值。 The microcrystalline cellulose(MCC) and poly(butylene succinate) (PBS) composites were prepared by melt blending method. The influence of different temperature and MCC content on the steady-state rheological behavior and dynamic rheological behavior of the composites was studied by advanced capillary rheometer and rotationnal rheometer. The results show that:the rheological behavior of the corresponding relationship between the viscosity and the shear rate of the composites fits the power law model. Arrhenius equation can be employed to describe the dependence of the viscosity on temperature. The storage modulus (G') of the composites keeps invariant in linear viscoelastic region. When strain(γ) is over critical value (γc), the composites enter into the nonlinear viscoelastic region and the "Payne effect" occur. The γc decrease rapidly with the increase of strain. The storage modulus (G'), loss modulus (G") and complex viscosity(|η*|) of the composites all increase with the increasing contents of MCC in the range of angular frequency(ω) scanning. The value of G" is always higher than G' and the value of loss factor(tan(δ)) is always greater than one under the condition of the invariable content of MCC. Second plateau is observed for G' at low ω. The study of processing rheological properties of MCC/PBS composites might be valuable for the processing of MCC/PBS composites. 国家自然科学基金(11372108);湖南省自然科学基金(14JJ5021);湖南省高校创新平台开放基金(13K098)
[1] | BAI W, LI K. Partial replacement of silica with microcrystalline cellulose in rubber Composites[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(10):1597-1605. |
[2] | JUNIOR D, MENEZES A, SIQUEIRA G, et al. Extrusion and characterization of fuctionalized cellulose whiskers reinforced poly ethylene nanocomposites[J]. Polymer, 2009, 50(19):4552-4563. |
[3] | 李春光, 李春丽, 彭伟功等. 甘蔗渣微晶纤维素增强聚乳酸复合膜的性[J]. 机械工程材料, 2012, 36(8):79-82. LI C G, LI C L, PENG W G, et al. Properties of bagasse cellulose Microcrystal reinforcing poly lactic acid composites[J]. Materials for Mechanical Enngineering, 2012, 36(8):79-82(in Chinese). |
[4] | PETERSSON L, OKSMAN K. Biopolymerbased nano-composite:Comparing layered silicates and microcrystalline cellulose as nanoreinforcement[J]. Composites Science and Technology, 2006, 66(13):2187-2196. |
[5] | SPOLJARIC S, GENOVESE A, SHANKS R A. Polypropylene-microcrystalline cellulosecomposites with enhanced compatibility and properties[J]. Composites Part A:Applied Science and Manufactuing, 2009, 40(6):791-799. |
[6] | PHASAWAT C, SAOWAROJ C, THANAWADEE L. Use of microcrystalline cellulose prepared from cotton fabric waste to prepare poly(butylene succinate) composites[J]. Advanced Materials Research Vols, 2012, 488-489(11):696-700. |
[7] | 刘跃军, 刘亦武, 魏珊珊. EVOH/纳米SiO2复合材料的加工流变性能及应用[J]. 高分子材料科学与工程, 2011, 27(5):124-128. LIU Y J, LIU Y W, WEI S S. Processing rheological property and application of EVOH/SiO2 nanocomposites[J]. Polymer Materials Science and Engineering, 2011, 27(5):124-128(in Chinese). |
[8] | 胡洪国, 郑强, 陶小乐. 超细SiO2填充聚甲基乙烯基硅氧烷的动态流变特性[J]. 高等学校化学学报. 2004, 25(5):985-987. HU H G, ZHENG Q, TAO X L. Dynamic rheological pro-perties of poly(methylvinyl) siloxane filled with untrafine porous silica[J]. Chemical Journal of Chinese Universities. 2004, 25(5):985-987(in Chinese). |
[9] | 陈艺兰. PE/Ca(OH)2复合材料绿色无卤阻燃及流变行为研究[D]. 福建:福建师范大学, 2008. CHEN Y L. Study on green nonhalogen flame retardance and rheological behavior of PE/Ca(OH)2 composites[D]. Fujian:Fujian Normal University, 2008(in Chinese). |
[10] | 李明珠. 纳米纤维素/聚乳酸复合材料的制备与研究[D]. 南京:南京林业大学, 2012. LI M Z. Preparation and study on nano-fibers/PLA com-posites[D]. Nanjng:Nanjing Forestry University, 2012(in Chinese). |
[11] | 赵京泼, 杨万泰. 合成生物降解性聚酯、研究的进展[J]. 高分子通报, 1999(2):11-21. ZHAO J B, YANG W T. Development in biodegradable polyesters synthesized by chemical Methods[J]. Polymer Bulletin, 1999(2):11-21(in Chinese). |
[12] | 钱伯章. 新型生物降解塑料的开发和应用[J]. 橡塑技术与装备, 2007, 33(1):39-40. QIAN B Z. The development and application of biodegradable plastics[J]. China Rubber/Plastics Technology and Equipment, 2007, 33(1):39-40(in Chinese). |
[13] | AANGUREN M L, MORA E, MACOSKO C W, et al. Effect of reinforcing fillers on the rheology of polymers melts[J]. Journal of Rheology, 1992, 36(6):1165-1183. |
[14] | CASSAGNAU P. Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state[J]. Polymer. 2003, 44:2455-2462. |
[15] | SINGH T, KUMAR A. Self-aggregation of ionic liquids in aqueous media:A thmodynamic study[J]. Colloids and Sufaces A Physicochemical and Engineering Aspects, 2008, 318(1-3):263-268. |
[16] | 曹咏梅, 黄科林, 吴睿等. 微晶纤维素的性质、应用及市场前景[J]. 企业科技与发展, 2009(12):47-48. CAO Y M, HUANG K L, WU R, et al. Characteristics, applications and market prospect of microcrystalline cellulose[J]. Enterprise Science and Technology & Development, 2009(12):47-48(in Chinese). |
[17] | SAHEB D N, JOG J P. Natural fiber polymer composites:A review[J]. Advances in Polymer Technology, 1999, 18(4):351-363. |
[18] | WAMBUA P, IVENS J, VERPOEST I. Natural fibres:Can they replace glass in fibre reinforced plastics[J]. Composites Science and Technology, 2003, 63(9):1259-1264. |
[19] | BHATTACHARYYA S K, PARMAR B S, CHAKRABORTYA, et al. Exploring microcrystalline cellulose(MCC) as a green multifunctional additive(MFA) in a typical solution-grade styrene butadiene rubber(S-SBR) based tread compound[J]. Industrial & Engineering Chemistry Research, 2012, 51(32):10649-10658. |