全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

碳纤维表面原位固相协同生长纳米碳管
In-situ solid phase synergy growth of carbon nanotubes on the surface of carbon fibers

DOI: 10.13801/j.cnki.fhclxb.20160530.002

Keywords: 原位固相生长法,碳纳米管,催化剂浓度,碳纤维,力学性能
in-situ solid phase growth
,carbon nanotubes,catalyst concentration,carbon fiber,mechanical property

Full-Text   Cite this paper   Add to My Lib

Abstract:

在碳纤维(CF)表面直接原位生长碳纳米管(CNTs),可有效避免CNTs分散不均的问题,充分发挥二者的优势,对获得高层间性能的碳纤维增强树脂基复合材料(CNTs-CF/EP)具有重要的意义。本文对CF进行表面改性处理,在CF表面负载催化剂粒子,然后通过原位生长法并在助催化剂噻吩的协同作用下,在CF表面固相生长了CNTs。此方法得到的CNTs-CF,不仅有效避免CNTs在基体中的相互缠绕、难以分散等问题。而且由于生长CNTs的碳源主要来自CF,二者结合强度较高,对提高CNTs-CF/EP的层间性能非常有利。借助于SEM、XRD及FT-IR等分析测试手段,研究了催化剂Ni(NO3)2·6H2O浓度对表面长有CNTs的CF的形貌、结构及其性能的影响。结果表明:在适当的催化剂浓度(0.2 mol·L-1)负载中,CF表面能够生长出结合牢固、垂直生长且均匀分布的CNTs,但力学性能有所下降。 The in-situ growth of carbon nanotubes (CNTs) on the carbon fiber can effectively avoid the uneven distribution of CNTs and exploit the advantages of carbon fiber and carbon nanotubes to the full,which play an important role in enhancing the interfaceproperties of the carbon fiber reinforcedpolymer (CF/EP).The surface of carbon fiber were modified and loaded with catalysts,and then the multy-walled carbon nanotubes (CNTs) were in-situ solid phase grown on the surface of carbon fiber with the assistance of thiophene.The carbon fiber obtained by this method can not only avoid the entanglement and uneven distribution of the CNTs in CNTs-CF/EP,but also enhance the interlaminar properties of CNTs-CF/EP due to the carbon source of synthesized CNTs mainly from the treated carbon fiber with the high surface bonding strength between the carbon fiber and the CNTs.The effects of the catalyst concentrations on the morphologies of growth CNTs and the performances of carbon fiber were investigated by SEM,XRD,FT-IR and other measurements.The results show that the synthesized CNTs can uniformly distribute and firmly bond on the surface of carbon fiber with the proper catalyst concentration of 0.2 mol·L-1.The mechanical properties of the carbon fiber decrease a little.

References

[1]  PARK S J, KIM M H. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites[J]. Journal of Materials Science, 2000, 35(8):1901-1905.
[2]  HUNG K H, KUO W S, KO T H, TZENG S S, YAN C. F. Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers[J]. Composites Part A, 2009, 40(8):1299-1304.
[3]  张娇霞, 郑亚萍, 张爱波, 等. 多壁碳纳米管/环氧树脂纳米复合材料的固化动力学研究[J]. 中国胶粘剂, 2007, 16(7):1-5. ZHANG J X, ZHENG Y P, ZHANG A B, et al. Study on curing dynamical data of multi-walls carbon nanotubes (MWNTs)/epoxy resin nanocomposites[J]. China Adhesives, 2007, 16(7):1-5.
[4]  ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[5]  滕德强, 景惧斌, 田乐, 等. 碳纳米管增强环氧树脂复合材料研究进展[J]. 塑料科技, 2011, 39(8):106-110. TENG D Q, JING J B, TIAN L, et al. Research progress on carbon nanotube reinforced epoxy composites[J]. Plastics Science and Technology, 2011, 39(8):106-110(in Chinese).
[6]  RAY H B, ANVAR A Z, WALT A D. Carbon nanotubes:the route toward applications[J]. Science, 2002, 297(5582):787-792.
[7]  孙科, 周新贵, 于海娇, 等. 原位生长碳纳米管增强复合材料的研究现状与展望[J]. 材料导报, 2010, 24(16):100-103. SUN K, ZHOU X G, YU H J, et al. Research progress and prospect of in situ grown CNTs-reinforced composites[J]. Materials Review, 2010, 24(16):100-103(in Chinese).
[8]  ERIK T T, REN Z F, CHOU T W. Advanced in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology, 2001, 61(13):1899-1912.
[9]  范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015, 32(2):332-340. FAN Y J, GU Y Z, DENG H Y, et al. Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32(2):332-340(in Chinese).
[10]  朱丽丽, 顾轶卓, 孙志杰, 等. 分散方法对低含量碳纳米管-玻纤/环氧层板性能的影响[J]. 复合材料学报, 2012, 29(5):11-17. ZHU L L, GU Y Z, SUN Z J, et al. Effects dispersing methods on the properties of low content of carbon nanotube glass fiber/epoxy resin laminates[J]. Acta Materiae Compositae Sinica, 2012, 29(5):11-17(in Chinese).
[11]  焦珑, 康卫民, 程博闻, 等. 碳纳米管修饰碳纤维增强树脂基复合材料力学性能研究进展[J]. 材料导报, 2013, 27(12):88-92. JIAO L, KANG W M, CHEN B W, et al. Carbon nanotubes modified carbon fiber reinforced resin matrix composites mechanical properties research progress[J]. Material Review, 2013, 27(12):88-92(in Chinese).
[12]  文诗琦, 李克智, 宋强. 碳纤维上原位生长碳纳米管对C/C复合材料弯曲性能的影响[J]. 复合材料学报, 2013, 30(6):7-13. WEN S Q, LI K Z, SONG Q, et al. The effect of in-situ growth of carbon nanotubes on carbon fiber on the properties of C/C composite bending[J]. Acta Materiae Compositae Sinica, 2013,30(6):7-13(in Chinese).
[13]  贺福, 杨永岗. 碳纤维的表面处理与复合材料的层间剪切强度[J]. 航空材料学报, 1994, 14(4):55-61. HE F, YANG Y G. Surface treatment of carbon fiber and interlaminer shear strength of composites[J]. Journal of Aeronautical Materials, 1994, 14(4):55-61(in Chinese).
[14]  VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid & Interface Science, 2006, s128-130:37-46.
[15]  SHEN Y X, LI Y, SONG H H, et al. A General strategy for the synthesis of carbon nanofibers from solid carbon materials[J]. Angewandte Chemie, 2012, 51(49):12202-12205.
[16]  ZHANG S, QIN L, SONG H H, et al. From solid carbon sources to carbon nanotubes:a general water-assisted approach[J]. RSC Advances, 2014, 4(97):54244-54248.
[17]  秦磊. 固相碳源合成碳纳米管及其性能的研究[D]. 北京化工大学, 2013. QIN L. Synthesis and formation mechanism of carbon nanotubes from solid carbon sources[D]. Beijing:Beijing University Chemical of Technology, 2013(in Chinese).
[18]  BEKYAROVA E, THOSTENSON E T, YU A, et al. Muliscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23:3970-3974.
[19]  赵建国, 刘朗, 郭全贵, 等. 炭纤维表面生长碳纳米管[J]. 新型炭材料, 2008, 23(1):12-16. ZHAO J G, LIU L, GUO Q G, et al. Carbon nanotube growth on the surface of carbon fibers by CVD[J]. New Carbon Materials, 2008, 23(1):12-16(in Chinese).
[20]  MOHLALA M S, LIU X Y, WITCOMB M J, et al. Carbon nanotube synthesis using ferrocene and ferrocenyl sulfide. The effect of sulfur[J]. Applied Organometallic Chemistry, 2007, 21(4):275-280.
[21]  陈卫祥, 陈文录, 徐铸德, 等. 碳纳米管的特性及其高性能的复合材料[J]. 复合材料学报, 2001, 18(4):1-5. CHEN W X, CHEN W L, XU Z D, etal. Characteristics of carbon nanotubes and high-quality composites[J]. Acta Materiae Compositae Sinica, 2001, 18(4):1-5(in Chinese).
[22]  BAKER R T K, BABER M A, HARRIS P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J]. Journal of Catalysis, 1972, 26(1):51-62.
[23]  KIM S W, KIM T, KIM Y S, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers[J]. Carbon, 2012, 50(1):3-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133