全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

超级电容器用CeO2-MnO/3D石墨烯复合材料的制备
Synthesis of CeO2-MnO/3D graphene composite for supercapacitors

DOI: 10.13801/j.cnki.fhclxb.20160420.001

Keywords: 石墨烯,CeO2,MnO,生物模板,超级电容器
graphene
,CeO2,MnO,bio-template,supercapacitors

Full-Text   Cite this paper   Add to My Lib

Abstract:

以西瓜瓜瓤为碳源,采用两步碳化法制备三维石墨烯(3D-Fiberbased Graphene,3D G)材料,并使用水热法制备了CeO2-MnO/3D G复合材料,以期获得比电容高,循环寿命好的石墨烯超级电容器电极材料。结果表明:3D G材料具有较高比表面积,最高可达到332 m2·g-1。CeO2-MnO/3D G复合材料具有三维导电网络结构,金属氧化物颗粒在石墨烯片层间生长均匀,粒径在10 nm左右。电化学测试结果显示:在0.5 mol·L-1的Na2SO4溶液中,电流密度1 A·g-1,当摩尔比MnO∶CeO2=4∶1,复合负载量在80%时得到的CeO2-MnO/3D G复合材料拥有最高比电容,达308.5 F·g-1,经过1 000次循环充放电测试比电容保持率为95.5%。CeO2-MnO/3D G复合材料电化学性能的提高主要是因为两种金属氧化物复合负载与石墨烯的协同作用。 In order to obtain supercapacitor materials with high specific capacitance and good cycle life,The 3D-Fiberbased graphene (3D G) was prepared with a two-step carbonation by watermeon flesh as carbon source.At last CeO2-MnO/3D G composite was prepared with the Hydrothermal method.The results show thatthe 3D G exhibits an excellent BET-surface area of 332 m2·g-1 due to the good spatial structure.CeO2-MnO/3D G composite are featured with a 3D conductive network structure,and metal oxide particles between the graphene sheets grow evenly,with about 10 nm in diameter.The electrochemical testing results show that the CeO2-MnO/3D G composite exhibit an excellent capacitance of 308.5 F·g-1 with the current density of 1 A·g-1,MnO:CeO2=4:1 and composite load at 80% in 0.5 mol·L-1 Na2SO4 solution.Meanwhile,the CeO2-MnO/3D G composite also show outstanding cycling stability with 95.5% of the capacitance retention after 1000 cycles of charge/discharge.The high electrochemical properties of the CeO2-MnO/3D G composite is mainly attributed to the synergy of two metal oxide composite load with graphene. 国家自然科学基金(21277094);国家自然科学基金(51478285);江苏省高校自然科学研究项目-重大项目(14KJA430004)

References

[1]  TOUPIN M, BROUSSE T, BELANGER D. Storage mechanism of MnO2 electrode usedinaqueouselectrochemical capacitor[J]. Chemistry of Materials, 2004, 16(6):3184-3190.
[2]  盛凯旋, 徐宇曦, 李春, 等. 化学还原氧化石墨烯制备高性能石墨烯自组装水凝胶[J]. 新型炭材料, 2011, 26(1):9-15. SHENG K X, XU Y X, LI C, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Materials, 2011, 26(1):9-15(in Chinese).
[3]  LEE J W, HALL A S, KIM J D, et al. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chemistry of Materials, 2012, 24(6):1158-1164.
[4]  黄徽, 杨平. 石墨烯基有序介孔金属氧化物复合材料的制备及研究进展[J]. 复合材料学报, 2015, 32(5):1233-1240. HUANG H, YANG P. Preparation and research progress of graphene-based ordered mesoporous metal oxide composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1233-1240(in Chinese).
[5]  XU B, YUE S F, SUI Z Y, et al. What is the choice for supercapacitors:graphene or graphene oxide[J]. Energy Environmental Science, 2011, 4(2):2826-2830.
[6]  CHEN Y, ZHANG X, ZHANG D, et al. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes[J]. Materials Letters, 2011, 49(1):573-580.
[7]  ZHANG X, SUN X, CHEN Y, et al. One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors[J]. Materials Letters, 2012, 68(3):336-339.
[8]  WANG H, CUI L F, YANG Y, et al. Mn3O4-Graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. Journal of the American Chemical Society, 2014, 132(1):13978-13980.
[9]  WEN Z H, WANG X C, MAO S, et al. Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor[J]. Advanced Materials, 2012, 24(3):5610-5616.
[10]  COTTINEAU T, TOUPIN M, DELAHAYE T, et al. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors[J]. Applied Physics A:Materials Science Processing, 2006, 82(1):599-606.
[11]  杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其聚合物的复合[J]. 新型炭材料, 2008, 23(3):193-200. YANG Y G, CHEN C M, WEN Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, 23(3):193-200(in Chinese).
[12]  POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transitionmetal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(3):496-499.
[13]  NAM K T, KIM D P, YOO J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes[J]. Science, 2006, 312(5):885-888.
[14]  MEDURI P, PENDYALA C, KUMAR V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-Ion batteries[J]. Nano Letters, 2009, 9(1):612-616.
[15]  BAN C, WU Z, GILLASPIE D T, et al. Nanostructured Fe3O4/SWNT electrode:binder-free and high-rate Li-ion anode[J]. Advanced Materials, 2010, 22(5):145-149.
[16]  WEI W F, CUI X W, CHEN W X, et al. Manganeseoxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews, 2011, 40(3):1697-1721.
[17]  HU C C, WU Y T, CHANG K H. Low-temperature hydrothermal synthesis of Mn3O4 and MnooH single crystals determinant influence of oxidants[J]. Chemistry of Materials, 2008, 20(1):2890-2894.
[18]  LI L, GUO Z, DU A, et al. Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties[J]. Journal of Materials Chemistry, 2012, 22(8):3600-3605.
[19]  CONWAY B E. Transition from "supercapaeitor" to "battery" behavior in electrochemical energy storage[J]. Journal of the Electrochemistry Society, 1991, 138(6):1539-1548.
[20]  邓凌峰, 余开明, 严忠, 等. CO2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料的制备与表征[J]. 复合材料学报, 2015, 32(5):1390-1398. DENG L F, YU K M, YAN Z, et al. Preparation and characterization of Co2+ doped graphene/LiFePO4 composite cathode materials for lithium battery[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1390-1398(in Chinese).
[21]  李嘉, 石峰晖, 吕晶, 等. 电弧法制备石墨烯材料的表征与评价[J]. 复合材料学报, 2015, 32(6):1658-1662. LI J, SHI F H, LV J, et al. Characterization and evaluation of electric-arc-produced graphene material[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1658-1662(in Chinese).
[22]  吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(1):301-318. WU J X, XU H, ZHANG J. Raman Spectroscopy of Graphene[J]. Acta Chimica Sinica, 2014, 72(3):301-318(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133