|
- 2016
考虑纤维随机分布的复合材料热残余应力分析及其对横向力学性能的影响
|
Abstract:
建立了考虑纤维随机分布并包含界面的复合材料微观力学数值模型,模拟玻璃纤维/环氧复合材料固化过程中的热残余应力。通过与纤维周期性分布模型的计算结果进行对比,发现纤维分布形式会对复合材料的热残余应力产生重要影响,纤维随机分布情况下的最大热残余应力明显大于纤维周期性分布的情况下。研究了含热残余应力的复合材料在横向拉伸与压缩载荷下的损伤和破坏过程,结果表明:热残余应力的存在显著影响了复合材料的损伤起始位置和扩展路径,削弱了复合材料的横向拉伸和压缩强度。在横向拉伸载荷下,考虑热残余应力后,复合材料的强度有所下降,断裂应变显著降低;在横向压缩载荷下,考虑热残余应力后,复合材料的强度略有下降,但失效应变基本保持不变。由于热残余应力的影响,复合材料的横向拉伸和压缩强度分别下降了10.5%和5.2%。 A micromechanical numerical model was established for composites, including the interface and taking into account random fiber distribution, to simulate the thermal residual stress of glass fiber/epoxy composites during the curing process. By comparison with the calculation results of model with periodic fiber distribution, it is found that the fiber array form has great influence on the thermal residual stress of composites, with the maximum thermal residual stress of random fiber distribution much greater than that of periodic fiber distribution. The damage and failure process of composites subjected to transverse tension and compression load including thermal residual stress were also investigated. The results indicate that the existence of thermal residual stress significantly affects the damage initiation location and progressing path of composites, weakening the transverse tensile and compressive strength of the composites. Under transverse tension load, after including thermal residual stress, the strength of the composite decreases somewhat, and the fracture strain decreases greatly; under transverse compression load, after including thermal residual stress, the strength of the composite decreases slightly, but the failure strain almost remains unchanged. Due to the effect of thermal residual stress, the transverse tensile and compressive strength of the composites decrease by 10.5% and 5.2%, respectively. 国家自然科学基金(11402045,11302036);中国博士后科学基金(2014M560204);中央高校基本科研业务费专项资金(DUT14RC-(3)058)
[1] | PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-A study of the literature-Part I:Formation of residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(11):1847-1857. |
[2] | PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-A study of the literature. Part III:Effects of thermal residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1581-1596. |
[3] | GENTZ M, ARMENTROUT D, RUPNOWSKI P, et al. Residual stress in unidirectional graphite fiber polyimide composites as a function of aging[J]. Composites Science and Technology, 2004, 64(10-11):203-220. |
[4] | NAIRN J A, ZOLLER P. Matrix solidification and the resulting residual thermal-stresses in composites[J]. Journal of Materials Science, 1985, 20(1):355-367. |
[5] | PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-A study of the literature-Part II:Experimental techniques[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(3):651-665. |
[6] | FIEDLER B, HOJO M, OCHIAI S, et al. Failure behavior of an epoxy matrix under different kinds of static loading[J]. Composites Science and Technology, 2001, 61(11):1615-1624. |
[7] | CANAL L P, SEGURADO J, LLORCA J. Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear[J]. International Journal of Solids and Structures, 2009, 46(11-12):2265-2274. |
[8] | 胡更开, 黄国良. 残余应力对复合材料弹-塑性变形的影响[J]. 复合材料学报, 2000, 17(2):60-65. HU G K, HUANG G L. Influence of residual stress on elastic-plastic deformation of composite materials[J]. Acta Materiae Compositae Sinica, 2000, 17(2):60-65(in Chinese). |
[9] | 杨仲, 张博明. 基于压力隧洞模型的复合材料横向热残余应力分析[J]. 固体力学学报, 2009, 30(2):148-154. YANG Z, ZHANG B M. Analysis of transverse thermal residual stress in composites based on the pressed tunnel model[J]. Chinese Journal of Solid Mechanics, 2009, 30(2):148-154(in Chinese). |
[10] | 张博明, 杨仲, 孙新杨, 等. 含界面相复合材料热残余应力分析[J]. 固体力学学报, 2010, 31(2):142-148. ZHANG B M, YANG Z, SUN X Y, et al. Thermal residual stresses in a composite with fiber/matrix interphase[J]. Chinese Journal of Solid Mechanics, 2010, 31(2):142-148(in Chinese). |
[11] | ZHAO L G, WARRIOR N A, LONG A C. A thermo-viscoelastic analysis of process-induced residual stress in fibre-reinforced polymer-matrix composites[J]. Materials Science and Engineering A, 2007, 452-453:483-498. |
[12] | FIEDLER B, HOJO M, OCHIAI S, et al. Finite element modeling of initial matrix failure in CFRP under static transverse tensile load[J]. Composites Science and Technology, 2001, 61(1):95-105. |
[13] | FLETCHER A J, OAKESHOTT J L. Thermal residual microstress generation during the processing of unidirectional carbon fibre/epoxy resin composites:Random fibre arrays[J]. Composites, 1994, 25(8):806-813. |
[14] | JIN K K, OH J H, HA S K. Effect of fiber arrangement on residual thermal stress distribution in a unidirectional composite[J]. Journal of Composite Materials, 2007, 41(5):591-611. |
[15] | HOBBIEBRUNKEN T, HOJO M, JIN K K, et al. Influence of non-uniform fiber arrangement on microscopic stress and failure initiation in thermally and transversely loaded CF/epoxy laminated composites[J]. Composites Science and Technology, 2008, 68(15-16):3107-3113. |
[16] | GONZáLEZ C, LORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression:Microscopic mechanisms and modeling[J]. Composites Science and Technology, 2007, 67(13):2795-2806. |
[17] | YANG L, YAN Y, RAN Z G, et al. A new method for generating random fibre distributions for fibre reinforced composites[J]. Composites Science and Technology, 2013, 76(4):14-20. |
[18] | SODEN P, HINTON M, KADDOUR A. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composites laminates[J]. Composites Science and Technology, 1998, 58(7):1225-1254. |
[19] | ZHANG Y F, XIA Z H, ELLYIN F. Evolution and influence of residual stresses/strains of fiber reinforced laminates[J]. Composites Science and Technology, 2004, 64(10-11):1613-1621. |
[20] | YANG L, YAN Y, LIU Y J, et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science and Technology, 2012, 72(15):1818-1825. |