|
- 2016
Ti合金插层厚度对反应连接TiB2基陶瓷/Ti-6Al-4V梯度复合材料的影响
|
Abstract:
将Ti合金插层引入(Ti+B4C)反应原料和Ti合金底板之间,研究Ti合金插层厚度变化对超重力反应连接TiB2基陶瓷/Ti-6Al-4V梯度复合材料界面显微组织与力学性能的影响。热力学计算表明:合成反应的绝热温度远超Ti合金的熔点,可以保证不同厚度的Ti合金插层全部熔化。XRD、FESEM及EDS分析结果表明:在陶瓷和Ti合金底板之间形成梯度界面区,且随着Ti合金插层厚度的增加,梯度界面区的厚度也不断增大。自陶瓷基体至Ti合金底板,TiB2和TiC1-x 的体积分数不断减少,而TiB的体积分数先增加而后减少,最终形成以TiB2、TiC1-x 及TiB陶瓷相尺寸和分布为特征的梯度复合结构。而梯度连接区的硬度分布趋势更加平缓,其剪切强度不断提升。 By introducing Ti alloy interlayer between (Ti+B4C) reactant and Ti alloy substrate, the effect of thickness variations of Ti alloy interlayer on the microstructure and mechanical properties of the interface of TiB2 based ceramic/Ti-6Al-4V graded composites has been discussed, which were prepared by reaction bonding in high gravity field. The thermodynamic calculation shows that the adiabatic temperature of synthesis reaction is much higher than the melting point of Ti alloy, which ensures Ti alloy interlayer with different thickness completely melts. The XRD, FESEM and EDS analysis results show that the graded interface zone between ceramic and Ti alloy substrate forms, and the thickness of which increases with increasing thickness of Ti alloy interlayer. The volume fraction of TiB2 phase and TiC1-x gradually reduces, but the volume fraction of TiB first increases and then decreases from ceramic matrix to Ti alloy substrate, finally, on which there is the presence of the graded composite structures characterized by the size and distribution of TiB2, TiC1-x and TiB ceramic phases. And hardness distribution trend of the gradient connection area becomes smooth and shear strength improves gradually. 国家自然科学基金(51072229,51202293)
[1] | 张珊珊, 崔洪芝, 赫庆坤, 等. 等离子加热反应合成TiB2-TiC-Fe2Ti复合材料[J]. 复合材料学报, 2014, 31(3): 556-562. ZHANG S S, CUI H Z, HE Q K, et al. TiB2-TiC-Fe2Ti composite synthesized by plasma heating reaction[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 556-562 (in Chinese). |
[2] | 宋亚林, 张龙, 赵忠民, 等. TiC-TiB2陶瓷与Ti6Al4V 熔化连接及层状复合材料制备[J]. 焊接学报, 2013, 34(5): 37-40. SONG Y L, ZHANG L, ZHAO Z M, et al. Layered composite of solidified TiC-TiB2 ceramic to Ti-6Al-4V alloy achieved by fusion bonding[J]. Transactions of the China Welding Institution, 2013, 34(5): 37-40 (in Chinese). |
[3] | 唐群, 楚建新, 张晓勇. 陶瓷-金属连接中的残余应力[J]. 电子工艺技术, 2001, 22(4): 166-170. TANG Q, CHU J X, ZHANG X Y. The residual stress in ceramic-metal joint[J]. Electronics Process Technology, 2001, 22(4): 166-170 (in Chinese). |
[4] | 李卓然, 曹健, 冯吉才, 等. 中间层成分对TiAl/TiB2金属陶瓷SHS连接的影响[J]. 焊接学报, 2006, 27(4): 29-32. LI Z R, CAO J, FENG J C, et al. Effect of composition of interlayer on TiAl/TiB2 cermet self-propagating high-temperature synthesis joint[J]. Transactions of the China Welding Institution, 2006, 27(4): 29-32 (in Chinese). |
[5] | 李树杰, 张利. SiC基材料自身及其与金属的连接[J]. 粉末冶金技术, 2004, 22(2): 91-97. LI S J, ZHANG L. Joining SiC-based materials to themselves and metals[J]. Powder Metallurgy Technology, 2004, 22(2): 91-97 (in Chinese). |
[6] | 邹武装. 钛手册[M]. 北京: 化学工业出版社, 2012: 8. ZOU W Z. Titanium handbook[M]. Beijing: Chemical Industry Press, 2012: 8 (in Chinese). |
[7] | 张平, 宣益民, 李强. 界面接触热阻的研究进展[J]. 化工学报, 2012, 63(2): 335-349. ZHANG P, XUAN Y M, LI Q. Development on thermal contact resistance[J]. 2012, 63(2): 335-349 (in Chinese). |
[8] | 吴巍, 高洪明, 程广福, 等. 高温停留时间对细晶粒钛合金粗晶区组织的影响[J]. 焊接学报, 2009, 30(9): 5-12. WU W, GAO H M, CHENG G F, et al. Influence of elevated temperature holding time on microstructure and properties in heat affected zone of fine grained titanium alloy[J]. Transactions of the China Welding Institution, 2009, 30(9): 5-12 (in Chinese). |
[9] | 吕维洁, 张小农, 张荻, 等. 原位合成TiB和TiC增强钛基复合材料热力学[J]. 中国有色金属学报, 1999, 9(2): 220-224. LV W J, ZHANG X N, ZHANG D, et al. Thermodanamic research on in situ formation of TiB and TiC reinforced titanium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 1999, 9(2): 220-224 (in Chinese). |
[10] | HUANG X G, ZHAO Z M, ZHANG L. Fusion bonding of solidified TiC-TiB2 ceramic to Ti-6Al-4V alloy achieved by combustion synthesis in high-gravity field[J]. Materials Science and Engineering A, 2013, 564: 400-407. |
[11] | 戴永年. 二元合金相图集[M]. 北京: 科学出版社, 2009: 158. DAI Y N. Binary alloy phase diagrams[M]. Beijing: Science Press, 2009: 158 (in Chinese). |
[12] | VALLAURI D, SHCHERBAKOV V A, KHITEV A V, et al. Study of structure formation in TiC-TiB2-MexOy ceramics fabricated by SHS and dendification[J]. Acta Materialia, 2008(56): 1380-1389. |
[13] | FENG H B, JIA D C, ZHOU Y. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36: 558-563. |
[14] | KINGERY W D, BOWEN H K, UHLMANN D R. 陶瓷导论[M]. 2版. 北京: 高等教育出版社, 2010: 157. KINGERY W D, BOWEN H K, UHLMANN D R. Introduction of ceramics[M]. 2rd ed. Beijing: Higher Education Press, 2010: 157 (in Chinese). |
[15] | 沈孝芹, 李亚江, 王娟, 等. 陶瓷基复合材料/金属焊接研究现状[J]. 焊接技术, 2007, 36(4): 8-11. SHEN X Q, LI Y J, WANG J, et al. Welding study status quo of ceramic matrix composite and metal[J]. Welding Technology, 2007, 36(4): 8-11 (in Chinese). |
[16] | YANG Y F, MU D K, JIANG Q C. A simple route to fabricate TiC-TiB2/Ni composite via thermal explosion reaction assisted with external pressure in air[J]. Materials Chemistry and Physics, 2014, 143: 480-485. |
[17] | ZHAO G L, HUANG C Z, LIU H L. A study on in-situ synthesis of TiB2-SiC ceramic composites by reactive hot pressing[J]. Ceramics International, 2014, 40: 2305-2313. |
[18] | KITIWAN M, ITO A, GOTO T. Spark plasma sintering of TiN-TiB2 composites[J]. Journal of the European Ceramic Society, 2014, 34: 197-203. |
[19] | YANG Z L, LIU Z G, OUYANG J H. Synthesis route and mechanical properties of reactive hot pressed TiN-TiB2 ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 54-59. |
[20] | WANG Y W, QIU F, SHU S L, et al. Effect of Ni content on the compression properties and abrasive wear behavior of the (TiB2-TiCxNy)/Ni composites[J]. International Journal of Refractory Metals and Hard Materials, 2012, 34: 8-12. |
[21] | 何代华, 傅正义, 王皓, 等. 陶瓷/金属的自蔓延高温合成焊接研究现状[J]. 焊接学报, 2002, 23(1): 85-97. HE D H, FU Z Y, WANG H, et al. Welding of ceramic/metal with self-propagating high temperature synthesis[J]. Transactions of the China Welding Institution, 2002, 23(1): 85-97 (in Chinese). |