全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

金属玻璃基复合材料的微结构效应
Microstructure effect of metallic glass matrix composites

DOI: 10.13801/j.cnki.fhclxb.20160920.001

Keywords: 金属玻璃基复合材料,颗粒,自由体积,Ramberg-Osgood模型,韧性
metallic glass matrix composites
,particle,free volume,Ramberg-Osgood model,toughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于自由体积理论和Ramberg-Osgood模型,并利用ABAQUS软件,建立颗粒随机分布代表性体积单元模型,模拟了Ti64.5Zr14.5V18.5Cu2.5颗粒增韧Ti基金属玻璃基复合材料在单轴拉伸状态下的微结构效应,讨论了颗粒的体积分数、团聚数目、长径比、定位取向和界面对金属玻璃韧性的影响。结果表明:提高颗粒体积分数能显著提高复合材料的塑性,但部分牺牲了复合材料的强度;增大颗粒长径比能够增强复合材料的塑性和屈服强度;使颗粒的取向与荷载方向成90°或0°,不仅增强了复合材料的塑性,而且与其他排布相比也增强了复合材料的强度;减少团聚数目至2个以下,能明显减少金属玻璃基复合材料的塑性和强度的损失,使团聚中颗粒与荷载成90°,却能改善复合材料的塑性和强度;在颗粒增韧金属玻璃基复合材料中加入零厚度界面,能观察到在主剪切带上颗粒和基体在界面处脱粘,得到与实验现象更加吻合的结果。通过上述的研究能够很好地理解复合材料的微结构效应,并有利于材料的设计。 Based on the free volume theory and Ramberg-Osgood model, a representative volume element model with particles random distribution was established, and the microstructure effect of Ti64.5Zr14.5V18.5Cu2.5 particles toughening Ti-base metallic glass matrix composites under the uniaxial tension, was simulated by ABAQUS code. The effects of particles volume fraction, the number of reunion and aspect ratio, along with particles orientation and interface on the ductility of metallic glass were discussed. Results show that increasing particles volume fraction can improve the plasticity of composites significantly, but at the expense of the part strength of the composites. Increasing particles aspect ratio can enhance the plasticity and yield strength of composite materials. Making the orientation of particles and the load direction into 90 ° or 0°not only enhances the plasticity, but also improves the strength of composites compared with the other configuration. Reducing the number of reunion to below two can significantly reduce loss of the plasticity and strength of metallic glass composites, and the particles of reunions and the load at 90°, can improve the plasticity and strength of composites. In particles toughening metallic glass matrix composites with zero interface, particles and matrix debonding in interface in the main shear belt can be observed, according with the experimental phenomena more. The results help to well understand the microstructure effect of the composite materials which is beneficial to the design of the material. 国家自然基金(11202064);江苏省自然基金(BK201247)

References

[1]  INOUE A, KONG F L, ZHU S L, et al. Production methods and properties of engineering glassy alloys and composites[J]. Intermetallics, 2015, 58(58): 20-30.
[2]  QIAO J W, JIA H L, LIAW K. Metallic glass matrix composites[J]. Materials Science and Engineering R, 2016, 100: 1-69.
[3]  QIAO J W. In-situ dendrite/metallic glass matrix compo-sites: A Review[J]. Journal of Materials Science and Techno-logy, 2013, 29(8): 685-701.
[4]  魏孔庭. 金属玻璃中自由体积的研究[D]. 兰州: 兰州大学, 2013. WEI K T. On free volume in metallic glasses[D]. Lanzhou: Lanzhou University, 2013 (in Chinese).
[5]  JIA H L, ZHENG L L, LI W D, et al. Insights from the lattice strain evolution on deformation mechanisms in metallic-glass-matrix composites[J]. Metallurgical and Materials Transactions A, 2015, 46(6): 2431-2442.
[6]  LEE J C, KIM Y C, AHN J P, et al. Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies[J]. Acta Materialia, 2005, 53 (1): 129-139.
[7]  TOTRY E, GONZALEZ C, LLORCA J. Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear[J]. Composites Science and Technology, 2008, 68(3-4): 829-839.
[8]  LI J B, JANG J S C, LI C, et al. Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles[J]. Materials Science and Engineering A, 2012, 551: 249-254.
[9]  YANG L, YAN Y, LIU Y J, et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science and Technology, 2012, 72(15): 1818-1825.
[10]  邵雪桥, 康国政, 郭淑娟.界面性能对SiCp/6061Al 复合材料棘轮行为的影响[J]. 复合材料学报, 2008, 25(4): 119-125. SHAO X J, KANG G Z, GUO S J. Effect of interfacial bonding on ratcheting of SiCp/6061Al composite[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 119-125 (in Chinese).
[11]  QIAO J W, SUN A C, HUANG E W, et al. Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening[J]. Acta Materialia, 2011, 59(10): 4126-4137.
[12]  刘龙飞, 戴兰宏, 白以龙, 等. 大块金属玻璃中有热软化和自由体积产生诱导的剪切带行为比较[J]. 中国科学, 2008, 38(5): 500-512. LIU L F, DAI L H, BAI Y L, et al. Bulk metallic glass is produced by thermal softening and free volume Induced behavior of shear zone[J]. Science in China, 2008, 38(5): 500-512 (in Chinese).
[13]  李继承, 陈小伟, 陈刚.块体金属玻璃力学行为有限元模拟研究进展[J]. 固体力学报, 2010, 11(31): 76-84. LI J C, CHEN X W, CHEN G. Review on the FEM analysis on mechanical behavior of bulk metallic glass[J]. Chinese Journal of Solid Mechanics, 2010, 11(31): 76-84 (in Chinese).
[14]  ZHANG Y F, XIA Z H, ELLYIN F. Nonlinear viscoelastic micromechanical analysis of fibre-reinforced polymer laminates with damage evolution[J]. International Journal of Solids and Structures, 2005, 42(2): 591-604.
[15]  QIAO J W, HANG T Z, YANG F Q, et al. A tensile deformation model for in-situ dendrite/metallic glass matrix composites[J]. Scientific Reports, 2013, 3(10): 2816.
[16]  CHEN G, CHENG J L, LIU C T. Large-sized Zr-based BMG composite with enhanced tensile properties[J]. Intermetallics, 2012, 28(4): 25-33.
[17]  LI J S, BAI J, WANG J, et al. Deformation behavior of a Ti based bulk metallic glass composite with excellent cryogenic mechanical properties[J]. Materials and Design, 2014, 53(1): 737-740.
[18]  SPAEPEN F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall, 1977, 25(4): 407-415.
[19]  张茹远, 阚前华, 张娟, 等. 形状记忆合金增韧大块金属玻璃复合材料界面失效分析[J].应用数学和力学, 2014, 35(5): 171-174. ZHANG R Y, KAN Q H, ZHANG J, et al. Interfacial failure analysis for SMA-toughened BMG matrix composites[J]. Applied Mathematics and Mechanics, 2014, 35(5): 171-174 (in Chinese).
[20]  张茹远, 阚前华, 张娟, 等.形状记忆合金的力学及界面参数和体积参数对大块金属玻璃基复合材料增韧的影响[J]. 复合材料学报, 2015, 32(1): 188-195. ZHANG R Y, KAN Q H, ZHANG J, et al. Effects of mechanics and interface parameters and volume fraction of shape memory alloys on toughening of bulk metallic matrix glass composites[J].Acta Materiae Compositae Sinica, 2015, 32(1): 188-195 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133