|
- 2017
聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能
|
Abstract:
通过酸碱处理和机械研磨结合的方法制备纳米纤维素(CNFs),并利用冻融循环法分别制备了聚乙烯醇(PVA)和纳米纤维素/聚乙烯醇(CNFs/PVA)复合水凝胶,以及聚乙二醇(PEG)改性PVA和CNFs/PVA复合水凝胶。考察不同配方下复合水凝胶的微观形貌变化,并对复合水凝胶的溶胀性能、压缩强度及热稳定性能进行研究。结果表明,CNFs与PEG对PVA水凝胶的微观形貌均有改善作用,加入PEG后形成的PEG/PVA凝胶产生明显的三维网络结构。当PEG与CNFs同时加入到PVA凝胶后形成的CNFs-PEG/PVA凝胶具有均匀的互穿孔洞结构,此时复合水凝胶的孔隙率最高((67.5±4.3)%),溶胀度最好(980%),且压缩强度较PVA水凝胶也有所提升。PEG对复合凝胶的热稳定性无影响,而加入CNFs后,CNFs-PEG/PVA复合凝胶的初始热分解温度从235℃上升至300℃,显著提高了PVA凝胶的热稳定性。 Cellulose nanofibers (CNFs) were prepared by the combined method of acid alkali treatment and mechanical grinding. Polyvinyl alcohol (PVA), CNFs/PVA, PVA and CNFs/PVA modified by polyethylene glycol (PEG) composite hydrogels were prepared by the freezing/thawing method. The microstructure, swelling property, compressive strength and thermal stability of the PVA composite hydrogels were studied. The results show that the microstructure of PVA hydrogels is perfected by CNFs and PEG. After adding PEG, PEG/PVA composite hydrogel has obvious 3D network. When both PEG and CNFs are added into the PVA hydrogel, the obtained CNFs-PEG/PVA hydrogel forms a uniform network structure. The porosity and swelling degree of the CNFs-PEG/PVA hydrogel reach up to (67.5±4.3)% and 980%, respectively. Compared with the pure PVA hydrogel, the compressive strength of CNFs-PEG/PVA hydrogel also increases. The addition of PEG has no effect on the thermal stability of the PVA hydrogel, but the addition of CNFs significantly improves the thermal stability of CNFs-PEG/PVA hydrogel, and the initial thermal decomposition temperature of CNFs-PEG/PVA composite hydrogel increases from 235℃ to 300℃. 国家自然科学基金(31300483);江苏省自然科学基金(BK20130971);江苏高校优势学科建设工程项目
[1] | 乔堃, 郑裕东, 李佳琪, 等. 纳米细菌纤维素/聚乙烯醇复合水凝胶在模拟体液中的疲劳行为[J]. 复合材料学报, 2015, 32(5):1271-1278. QIAO K, ZHENG Y D, LI J Q, et al. Fatigue behavior of nano bacterial cellulose/poly(vinyl alcohol) composite hydro-gels in simulated body fluid[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1271-1278(in Chinese). |
[2] | 孟立山, 詹秀环, 姚新建. 聚乙烯醇水凝胶的制备及其溶胀性能[J]. 化工技术与开发, 2010(8):13-14. MENG L S, ZHAN X H, YAO X J. Preparation of polye-thylene (PVA) hydrogel and its properties[J]. Technology & Development of Chemical Industry, 2010, 39(8):13-14(in Chinese). |
[3] | 顾雪梅, 安燕, 殷雅婷, 等. 水凝胶的制备及应用研究[J]. 广州化工, 2012, 40(10):11-13. GU X M, AN Y, YIN Y T, et al. Preparation and appli-cation of hydrogel[J]. Guangzhou Chemical Industry, 2012, 40(10):11-13(in Chinese). |
[4] | LI Z, LIU W, LI Z, et al. Swelling and thermal properties of porous PNIPAM/PEG hydrogels prepared by radiation polymerization[J]. Nuclear Science and Techniques, 2013, 24(2):17-24. |
[5] | CHANG C, LUE A, ZHANG L. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels[J]. Macromolecular Chemistry and Physics, 2008, 209(12):1266-1273. |
[6] | DEMIREL G B, CAYKARA T, DEMIRAY M, et al. Effect of pore-forming agent type on swelling properties of macro-porous poly (N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels[J]. Macromolecular Chemistry and Physics, 2008, 46(1):58-64. |
[7] | SANNINO A, NETTI P A, MENSITIERI G, et al. Designing microporous macromolecular hydrogels for biome-dical applications:A comparison between two techniques[J]. Composites Science and Technology, 2003, 63(16):2411-2416. |
[8] | YAO W, GENG C, HAN D, et al. Strong and conductive double-network graphene/PVA gel[J]. RSC Advances, 2014, 4(74):39588-39595. |
[9] | SPILLER K L, LAURENCIN S J, CHARLTON D, et al. Superporous hydrogels for cartilage repair:Evaluation of the morphological and mechanical properties[J]. Acta Biomate-rialia, 2008, 4(1):17-25. |
[10] | 吴强, 陈宇飞, 韩晶, 等. 纳米纤维素晶体-聚乙烯醇水凝胶的制备及性能表征[J].功能高分子学报, 2013, 26(3):289-293. WU Q, CHEN Y F, HAN J, et al. Preparation and characterization of cellulose nanocrystal-poly(vinyl alcohol) hydrogel[J]. Journal of Functional Polymer, 2013, 26(3):289-293(in Chinese). |
[11] | 杨猛. 水凝胶的制备研究进展[J].化学工程师, 2013, 27(5):56-59. YANG M. Research progress on preparation of hydrogel[J]. Chemical Engineer, 2013, 27(5):56-59(in Chinese). |
[12] | 董伟, 刘宇光, 侯静, 等. 聚乙烯醇/淀粉复合水凝胶的辐射合成[J].化工新型材料, 2011, 39(10):125-127. DONG W, LIU Y G, HOU J, et al. Radiation synthesis of composite hydrogel of poly(vinyl alcohol) and starch[J]. New Chemical Materials, 2011, 39(10):125-127(in Chinese). |
[13] | LAM E, MALE K B, CHONG J H, et al. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose[J]. Trends in Biotechnology, 2012, 30(5):283-290. |
[14] | 李兆乾, 林建明, 吴季怀, 等. PEG致孔快速响应pH/温度双重敏感性PNIPAM/SA水凝胶的制备与性能[J]. 华侨大学学报:自然科学版, 2010, 31(6):649-656. LI Z Q, LIN J M, WU J H, et al. Preparation and properties of fast responsive pH/temperature sensitive poly(N Isopropylacrylamide)/sodium alginate hydrogels by using PEG as pore forming agent[J]. Journal of Huaqiao University:Natural Science, 2010, 31(6):649-656(in Chinese). |
[15] | 杜倩雯, 陈琳, 钟春燕, 等. BC/PVA/PEG增强型复合水凝胶的制备及其表征[J].广东化工, 2014, 41(16):17-18. DU Q W, CHEN L, ZHONG C Y, et al. Production and characterization of bacterial cellulose-poly (vinyl alcohol)-poly(ethylene glycol) enhanced nanocomposite hydrogel[J]. Guangdong Chemical Industry, 2014, 41(16):17-18(in Chinese). |
[16] | 刘红玲, 彭俊军, 李明, 等. 玻璃固载TiO2/纳米纤维素复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2013, 30(4):163-167. LIU H L, PENG J J, LI M, et al. Preparation and pho-tocatalytic activity of TiO2/nanocrystalline cellulose compo-site films coating on glass[J]. Acta Materiae Compositae Sinica, 2013, 30(4):163-167(in Chinese). |
[17] | 刘桦, 罗丙红, 陈睿鹏, 等. 纳米纤维素晶须增强增韧聚(L-乳酸)复合材料的制备与表征[J]. 复合材料学报, 2015, 32(6):1703-1713. LIU H, LUO B H, CHEN R P, et al. Preparation and characterization of nano cellulose whiskers reinforced and toughened poly(L-lactic acid) based compsotites[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1703-1713(in Chinese). |
[18] | CHEN W, Yu H, LIU Y. Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80 nm from bamboo fibers[J]. Carbohydrate Polymers, 2011, 86(2):453-461. |
[19] | AUTISSIER A, LE VISAGE C, POUZET C, et al. Fabri-cation of porous polysaccharide-based scaffolds using a com-bined freeze-drying/cross-linking process[J]. Acta Biomate-rialia, 2010, 6(9):3640-3648. |
[20] | 中国国家标准化管理委员会. GB/T 1041-2008塑料压缩性能的测定[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. GB/T 1041-2008 Plastics-Determination of compre-ssive properties[S]. Beijing:Standards Press of China, 2008(in Chinese). |
[21] | 李勍, 陈文帅, 于海鹏, 等. 纤维素纳米纤维增强聚合物复合材料研究进展[J]. 林业科学, 2013, 49(8):126-131. LI Q, CHEN W S, YU H P, et al. Cellulose nanofiber reinforced polymer nanocomposites:A short review[J]. Scientia Silvae Sinicae, 2013, 49(8):126-131(in Chinese). |
[22] | ABITBOL T, JOHNSTONE T, QUINN T M, et al. Rein-forcement with cellulose nanocrystals of poly (vinyl alcohol) hydrogels prepared by cyclic freezing and thawing[J]. Soft Matter, 2011, 7(6):2373-2379. |
[23] | LIU D, SUN X, TIAN H, et al. Effects of cellulose nanofibrils on the structure and properties on PVA nano-composites[J]. Cellulose, 2013, 20(6):2981-2989. |