全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一步法制备纳米SnO-SnO2复合材料及其光催化性能增强机制的光生载流子动力学
One step synthesis of nano SnO-SnO2 composites and the photoinduced charge carrier dynamics for the enhanced photocatalytic performance

DOI: 10.13801/j.cnki.fhclxb.20171214.002

Keywords: SnO-SnO2,载流子动力学,瞬态表面光电压(TSPV),光催化,纳米复合材料
SnO-SnO2
,charge carrier dynamic,transient surface photovoltage (TSPV),photocatalytic,nanocomposites

Full-Text   Cite this paper   Add to My Lib

Abstract:

半导体复合材料中的光生载流子动力学过程是影响其光催化性能的重要因素之一。该工作以二水合氯化亚锡(SnCl2·2H2O)为原料,NaOH为沉淀剂,采用一步溶剂热法制备了Sn的氧化物纳米SnO-SnO2复合材料,并利用SEM、XRD、TEM和Uv-Vis光谱等对产物进行了表征。结果表明,通过控制反应条件可以获得粒径约为10~20 nm的SnO-SnO2复合材料和粒径约为10 nm的四方相SnO2颗粒,分散性较好。光催化性能研究表明,纳米SnO-SnO2复合材料完全催化降解罗丹明B(RhB)的时间比纳米SnO2颗粒减少50%。针对这一结果,利用瞬态表面光电压(TSPV)技术分别对上述纳米材料的光生载流子动力学过程进行了讨论。结果表明,纳米SnO-SnO2复合结构的构建可以有效地促进光生载流子的分离,抑制SnO2表面光生载流子的复合及提高材料表面的光生载流子的寿命,进而显著增强其光催化性能。 The photoinduced charge carrier dynamics is one of the important factors that affect the photocatalytic performace of semiconductor composites. In this work, tin oxides nano-particles were successfully fabricated by one-step solvent thermal method using SnCl2·2H2O as raw material and NaOH as precipitant. The fabricated samples were characterized by SEM, XRD, TEM and Uv-Vis spectra. The results show that about 10-20 nm particles size SnO-SnO2 composites and about 10 nm tetragonal SnO2 particles can be obtained by adjusting the reaction condition. Photocatalytic degradation performance of the above two nano-materials has been evaluated by using Rhodamine (RhB) as the degradation agent. The degradation time of RhB can be reduced by 50% by using nano SnO-SnO2 composites as photocatalyst compared with pure nano SnO2 particles. For further studying the mechanism for this result, transient surface photovoltage (TSPV) technique has been carried out to understand the photoinduced charge carrier dynamics of the resulting materials. The corresponding results show that the photoinduced charge carrier separation has been enhanced, the surface recombination of photoinduced charge carrier has been reduced, and the lifetime of photoinduced charge carrier on the material surface is prolonged by building the nano SnO-SnO2 composites. Finally, the consequent photocatalystic performance is enhanced. 许昌学院科研项目(2018YB010);许昌市科技攻关社会发展项目(20160213154);国家自然科学基金(61504117;61605167)

References

[1]  PILKENTON S, RAFTERY D. Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO2-SnO2 photocatalysts[J]. Solid State Nuclear Magnetic Resonance, 2003, 24(4):236-253.
[2]  LIAO Xin, CHEN Jianjun, WANG Mingming, et al. Enhanced photocatalytic and photoelectrochemical activities of SnO2/SiC nanowire heterostructure photocatalysts[J]. Journal of Alloys & Compounds, 2016, 658:642-648.
[3]  LEI Yan, GU Longyan, HE Weiwei, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture[J]. Journal of Materials Chemistry A, 2016, 4(15):5474-5481.
[4]  PEI Linjuan, YANG Min, ZHANG Dan, et al. Photoelectrochemical activities and low content Nb-doping effects on one-dimensional self-ordered Nb2O5-TiO2 nanotubes[J]. RSC Advances, 2015, 5(12):9138-9142.
[5]  SINHA A K, MANNA P K, PRADHAN M, et al. Tin oxide with a p-n heterojunction ensures both UV and visible light photocatalytic activity[J]. RSC Advances, 2013, 4(1):208-211.
[6]  AFZAAL A, FARRUKH M A. Zwitterionic surfactant assisted synthesis of Fe doped SnO2-SiO2 nanocomposite with enhanced photocatalytic activity under sun light[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2017, 223:167-177.
[7]  CHEN Ying, LI Hui, MA Qian, et al. A novel electrospun approach for highly-dispersed carambola-like SnO2/C composite microparticles with superior photocatalytic performance[J]. Materials Letters, 2017, 202:17-20.
[8]  CHEN Ying, SUN Fengqiang, HUANG Zhijian, et al. Photochemical fabrication of SnO2 dense layers on reduced graphene oxide sheets for application in photocatalytic degradation of p-Nitrophenol[J]. Applied Catalysis B:Environmental, 2017, 215:8-17.
[9]  GNANASEKARAN L, HEMAMALIN R, SARAVANAN R, et al. Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes[J]. Journal of Photochemistry and Photobiology B:Biology, 2017, 173:43-49.
[10]  LIU Tongyao, MA Xinlong, YANG Linfen, et al. Highly enhanced photocatalytic activity of CaSn(OH)6 through tuning CaSn(OH)6/SnO2 heterostructural interaction and optimizing Fe3+ doping concentration[J]. Applied Catalysis B:Environmental, 2017, 217:256-264.
[11]  SAHAR Z A, SADAT M M, MASOND S N. Facile fabrication of Dy2Sn2O7-SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants[J]. Journal of Colloid and Interface Science, 2017, 497:298-308.
[12]  SIAL M A Z G, M I Q B A L, SIDDIQUE Z, et al. Synthesis and time-resolved photoluminescence of SnO2 nanorods[J]. Journal of Molecular Structure, 2017, 1144:355-359.
[13]  WANG Hongjuan, SUN Fengqiang, ZHANG Yu, et al. Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity[J]. Journal of Materials Chemistry, 2010, 20(27):5641-5645.
[14]  OHGI Hirotoshi, MAEDA Takahiro, HOSONO Eiji, et al. Evolution of nanoscale SnO2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solutions[J]. Crystal Growth & Design, 2007, 5(3):1079-1083.
[15]  DAI Shudong, YAO Zhongliang. Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity[J]. Applied Surface Science, 2012, 258(15):5703-5706.
[16]  LI Pu, LAN Yong, ZHANG Qian, et al. Iodinated SnO2 quantum dots:A facile and efficient approach to increase solar absorption for visible-light photocatalysis[J]. The Journal of Physical Chemistry C, 2016, 120(17):9253-9262.
[17]  WANG Feng, FAN Jingmin, SUN Qiuqin, et al. Adsorption mechanism of Cu-doped SnO2 (110) surface toward H2 dissolved in power transformer[J]. Journal of Nanomaterials, 2016, 2016:1-9.
[18]  UDDIN M T, NICOLAS Y, OLIVIER C, et al. Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes[J]. Inorganic Chemistry, 2012, 51(11):7764-7773.
[19]  NIU Mutong, HUANG Feng, CUI Lifeng, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures[J]. ACS Nano, 2010, 4(2):681-688.
[20]  ZHANG Yu, XIE Tengfeng, JIANG Tengfei, et al. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices[J]. Nanotechnology, 2009, 20(15):155707.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133