全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

碳/酚醛复合材料烧蚀行为预报方法
Forecasting method for ablation behaviors of carbon/phenolic composites

DOI: 10.13801/j.cnki.fhclxb.20160121.002

Keywords: 碳/酚醛复合材料,热防护,多物理场,烧蚀行为,有限元方法
carbon/phenolic composites
,thermal protection,multi-physics fields,ablation behaviors,finite element method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究用于钝头体高超声速飞行器热防护系统的碳/酚醛复合材料在典型服役环境下的烧蚀机制,首先,建立了烧蚀行为的数学模型,模型考虑了材料表面热辐射、固体相的温升吸热、基体热解反应吸热、高温热解气体引射、质量引射引起"热阻塞"效应、热解气体的温升和膨胀吸热等多种能量耗散机制,并利用有限元方法实现了数学模型的求解;然后,预报了在冷壁热流为400 kW·m-2、焓值为5 MJ·kg-1的气动热环境下碳/酚醛复合材料的烧蚀行为。结果表明:在受热过程中,厚度为20 mm的碳/酚醛复合材料碳化层的深度持续增加, 100 s时的表面温度达到1420 K,背壁温度为346 K,热解气体压力达10.3 atm,碳化层深度为7.50 mm。所得结论可为具有长时间大面积热防护需求的高超声速飞行器的热防护系统设计提供支持。 In order to investigate the ablation mechanisms of carbon/phenolic composites which were used in thermal protection system of hypersonic vehicles with blunt shapes, the mathematical model for ablation behavior was established firstly, the model took a variety of energy dissipation mechanisms, including the thermal radiation of material surface, the heat absorption of the solid phase by temperature rise, the heat absorption of matrix pyrolysis reaction, the ejection of high temperature pyrolysis gas, "heat block" effect caused by mass ejection, temperature rise and heat absorption by expansion of pyrolysis gas etc., into account, and the solving of mathematical model was realized by finite element method. Then, the ablation behaviors of carbon/phenolic composites under aerodynamic heating environment that cold wall heat flux was 400 kW·m-2 and enthalpy was 5 MJ·kg-1 were forecasted. The results show that during heating period, the depth of carbonized layer in carbon/phenolic composite whose thickness is 20 mm increases continually, the surface temperature reaches 1420 K and the rear wall temperature is 346 K at 100 s, the pyrolysis gas pressure arrives 10.3 atm and the depth of carbonized layer is 7.50 mm. The conclusions obtained can provide supports for the design of thermal protection system in hypersonic vehicles which have long-time and large area thermal protection requirements. 国家自然科学基金(11272107);国家"973"计划(2015CB655200);装备预先研究项目(51312070101)

References

[1]  COVINGTON M A, HEINEMANN J M, GOLDSTEIN H E, et al. Performance of a low density ablative heat shield material[J]. Journal of Spacecraft and Rockets, 2008, 45(2):237-247.
[2]  LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[J]. Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, 2004, 544:239-247.
[3]  BESSIRE B K, LAHANKAR S A, MINTON T K. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1383-1395.
[4]  VENKATAPATHY E, LAUB B, HARTMAN G J, et al. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions:Examples for saturn, titan and stardust-type sample return[J]. Advances in Space Research, 2009, 44(1):138-150.
[5]  BEACHER S J, SPARROW E M, GORMAN J M, et al. Theory and numerical simulation of thermochemical ablation[J]. Numerical Heat Transfer, Part A:Applications, 2014, 66(2):131-143.
[6]  HENDERSON J B, WIECEK T E. A mathematical-model to predict the thermal response of decomposing, expanding polymer composites[J]. Journal of Composite Materials, 1987, 21(4):373-393.
[7]  HOGAN R E, BLACKWELL B F, COCHRAN R J. Application of moving grid control volume finite element method to ablation problems[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(2):312-319.
[8]  陈海龙, 方国东, 李林杰, 等. 高硅氧/酚醛复合材料热-力-化学多物理场耦合计算[J]. 复合材料学报, 2014, 31(3):533-540. CHEN H L, FANG G D, LI L J, et al. Multi-physical field coupling calculation of silica/phenolic composites under thermal-mechanical-chemical condition[J]. Acta Materiae Compositae Sinica, 2014, 31(3):533-540(in Chinese).
[9]  LI W J, HUANG H M, TIAN Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation[J]. International Journal of Heat and Mass Transfer, 2015, 84:245-252.
[10]  LI W J, HUANG H M, TIAN Y, et al. A nonlinear pyrolysis layer model for analyzing thermal behavior of charring ablator[J]. International Journal of Thermal Sciences, 2015, 98:104-112.
[11]  XIE H, LIAO Z Y. Design and analysis of the thermal shield of EAST tokamak[J]. Plasma Science & Technology, 2008, 10(2):227-230.
[12]  SK?ADZIE A'N J, LA M H D, FIC A. Thermal analysis of vertical ground exchangers of heat pumps[J]. Heat Transfer Engineering, 2006, 27(2):2-13.
[13]  RUSSELL G W, STROBEL F. Modeling approach for intumescing charring heatshield materials[J]. Journal of Spacecraft and Rockets, 2006, 43(4):739-749.
[14]  SEPKA S A, WRIGHT M. Monte Carlo approach to FIAT uncertainties with applications for Mars science laboratory[J]. Journal of Thermophysics and Heat Transfer, 2011, 25(4):516-522.
[15]  PULCI G, TIRILLò J, MARRA F, et al. Carbon-phenolic ablative materials for re-entry space vehicles:Manufacturing and properties[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1483-1490.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133