|
- 2016
复合材料连接结构健康监测技术研究进展
|
Abstract:
连接结构是大型复合材料结构的关键环节,对保证复合材料结构的完整性具有重要作用。由于复合材料连接结构存在复杂的非线性耦合因素,使得复合材料连接结构的强度和破坏模式分析十分困难,因此,必须对复合材料连接结构的健康状态进行监测、诊断、评价和预测,通过在线监测获得的信息实时掌握结构的健康状况与对外界载荷的响应,并在此基础上对未来可能发生的缺陷和故障进行预报,以便能在合适时间段内采取措施,以保证复合材料结构的安全服役并取得最大的经济效益。以飞行器复合材料连接结构为背景,首先简要分析了复合材料胶接连接、机械连接和混合连接形式的损伤和失效模式,然后重点介绍了基于波传播法、阻抗法、智能涂层监测法、真空比较监测法、光纤传感监测法和混合集成监测法的复合材料连接结构健康监测(SHM)技术的研究进展,最后讨论了飞行器复合材料连接结构健康监测技术的发展趋势和面临的挑战。 As key components of large composite structures, joints play important roles to ensure the integrity of composite structures. It is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure health state of composite joints. Information obtained through real-time monitoring will be used to determine the health condition of structures and the response to external loads, and further predict possible defects and failures that may occur in the future so that actions can be taken at the appropriate period of time to ensure the safety and service of composite structures to achieve maximum economic benefits. Taking the aerospace composite joints as examples, we first briefly analyzes the damages and failure modes of different composite joints, including bonded joint, mechanical joint and hybrid joints. Then the art of state of structural health monitoring (SHM) technology progess for composite joints is reviewed, including wave propagation method, impedance method, intelligent coating monitoring method, comparative vacuum monitoring method, fiber optical sensing monitoring method and hybrid integration approaches. Finally the development trend and the challenges of structural health monitoring of aircraft composite joint are discussed. 国家自然科学基金(11472308,51475067);中央高校基本科研业务费专项资金(ZK1005,ZK1009)
[1] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12 (in Chinese). |
[2] | QUILTER A. Composites in aerospace applications:1355_0610CH[R]. Englewood CO:IHS ESDU, 2004. |
[3] | 范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展--飞机制造技术的新跨越[J]. 航空学报, 2009, 30(3):534-542. FAN Y Q, ZHANG L H. New development of extra large composite aircraft components application technology-Advance of aircraft manufacture technology[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):534-542 (in Chinese). |
[4] | MARSH G. Airbus A350 XWB update[J]. Reinforced Plastics, 2010, 54(6):20-24. |
[5] | CHOWDHURY N, CHIU W K, WANG J. Review on the fatigue of composite hybrid joints used in aircraft structures[C]//11th International Fatigue Congress. Melbourne:Trans Tech Publications, 2014:1591-1596. |
[6] | 赵群, 徐吉峰, 张田. 结构布局对复合材料壁板筋/壳界面连接强度的影响[J]. 复合材料学报, 2013, 30(增刊1):175-181. ZHAO Q, XU J F, ZHANG T. Effects of structural layout on the joint strength of the stringer/skin interface of composite stiffened panel[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl.1):175-181 (in Chinese). |
[7] | 王孝慧, 姚卫星. 复合材料胶接结构有限元分析方法研究进展[J]. 力学进展, 2012, 42(5):562-571. WANG X H, YAO W X. Progress in reseach on FEA models of adhesively bonded composite joints[J]. Advances in Mechanics, 2012, 42(5):562-571 (in Chinese). |
[8] | QING X, CHANG F K, STARNES J. Damage tolerance of notched composite laminates with reinforcing strips[J]. Journal of Composite Materials, 2003, 37(2):111-128. |
[9] | KELLY G. Load transfer in hybrid (bonded/bolted) composite single-lap joints[J]. Composite Structures, 2005, 69(1):35-43. |
[10] | KWEON J H, JUNG J W, KIM T H, et al. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding[J]. Composite Structures, 2006, 75(1):192-198. |
[11] | 马毓, 赵启林. 复合材料胶-螺混合连接接头承载力分析[J]. 复合材料学报, 2011, 28(4):225-230. MA Y, ZHAO Q L. Analysis of the bonded-bolted hybrid composite joints carrying capacity[J]. Acta Materiae Compositae Sinica, 2011, 28(4):225-230 (in Chinese). |
[12] | NAJAFI A, GARG M, ABDI F. Failure analysis of composite bolted joints in tension[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. California:Palm Springs, 2009:2505. |
[13] | MASSEREY B, FROMME P. Fatigue crack growth monitoring using high-frequency guided waves[J]. Structural Health Monitoring, 2013, 12(5-6):484-493. |
[14] | CHAN H, MASSEREY B, FROMME P. High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures[J]. Smart Materials and Structures, 2015, 24(2):025037. |
[15] | SEIFRIED R, JACOBS L, QU J. Propagation of guided waves in adhesive bonded components[J]. NDT & E International, 2002, 35(5):317-328. |
[16] | DALTON R P, CAWLEY P, LOWE M J S. The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure[J]. Journal of Nondestructive Evaluation, 2001, 20(1):29-46. |
[17] | COUCHMAN J, BELL J, NORONHA P. Computerized signal processing for detecting cracks under installed fasteners[J]. Ultrasonics, 1976, 14(6):256-262. |
[18] | KROLIKOWSKI J, SZCZEPEK J. Prediction of contact parameters using ultrasonic method[J]. Wear, 1991, 148(1):181-195. |
[19] | AYMERICH F, PAU M. Assessment of nominal contact area parameters by means of ultrasonic waves[J]. Journal of Tribology, 2004, 126(4):639-645. |
[20] | PAU M, BALDI A. Application of an ultrasonic technique to assess contact performance of bolted joints[J]. Journal of Pressure Vessel Technology, 2007, 129(1):175-185. |
[21] | JALALPOUR M, EL-OSERY A I, AUSTIN E M, et al. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals[J]. Smart Materials and Structures, 2014, 23(1):015017. |
[22] | 卢萍, 王宁, 陶俊林, 等. 基于声发射技术对螺栓连接结构微动磨损影响因素的研究[J]. 摩擦学学报, 2010, 30(5):443-447. LU P, WANG N, TAO J L, et al. Influence factors of fretting wear of bolted joints structure based on acoustic emission[J]. Tribology, 2010, 30(5):443-447 (in Chinese). |
[23] | ZHOU W, LIU R, LV Z, et al. Acoustic emission behaviors and damage mechanisms of adhesively bonded single-lap composite joints with adhesive defects[J]. Journal of Reinforced Plastics and Composites, 2015, 34(1):84-92. |
[24] | BAK M, KALAICHELVAN K, ARUMUGAM V. A novel approach for classification of failure modes in single lap joints using acoustic emission data[J]. Journal of Composite Materials, 2014, 48(24):3003-3017. |
[25] | ROACH D. Real time crack detection using mountable comparative vacuum monitoring sensors[J]. Smart Structures and Systems, 2009, 5(4):317-328. |
[26] | BOLLER C, CHANG F K, FUJINO Y. Encyclopedia of structural health monitoring[M]. New York City:John Wiley & Sons, Ltd., 2009:2243-2265. |
[27] | DA SILVA L F M, MOREIRA P M G P, LOUREIRO A L D. Determination of the strain distribution in adhesive joints using fiber Bragg grating (FBG)[J]. Journal of Adhesion Science and Technology, 2012, 28(14-15):1480-1499. |
[28] | KAGEYAMA K, MURAYAMA H, NARUSE H, et al. Application of fiber-optic distributed sensors to health monitoring for full-scale composite Structures[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(1):3-14. |
[29] | GRAVE J H L, H?HEIM M L, ECHTERMEYER A T. Measuring changing strain fields in composites with distributed fiber-optic sensing using the optical backscatter reflectometer[J]. Composites Part B:Engineering, 2015, 74(1):138-146. |
[30] | TSERPES K I, KARACHALIOS V, GIANNOPOULOS I, et al. Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I:Design, manufacturing and impact testing[J]. Composite Structures, 2014, 107:726-736. |
[31] | CANAL L P, SARFARAZ R, VIOLAKIS G, et al. Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors[J]. Composite Structures, 2014, 112:241-247. |
[32] | SARFARAZ R, CANAL L P, VIOLAKIS G, et al. An experimental-numerical investigation of hydrothermal response in adhesively bonded composite structures[J]. Composites Part A:Applied Science and Manufacturing, 2015, 73(2):176-185. |
[33] | KIM J T, NA W B, PARK J H, et al. Hybrid health monitoring of structural joints using modal parameters and EMI signatures[J]. Proceeding of SPIE, 2006, 6174:61742O. |
[34] | DEMETGUL M, SENYUREK V Y, UYANDIK R, et al. Evaluation of the health of riveted joints with active and passive structural health monitoring techniques[J]. Measurement, 2015, 69:42-51. |
[35] | 徐超, 周帮友, 刘信恩, 等. 机械螺栓连接状态监测和辨识方法研究进展[J]. 强度与环境, 2009, 36(2):28-36. XU C, ZHOU B Y, LIU X E, et al. A review of vibration-based condition monitoring and identification for mechanical bolted joints[J]. Structure & Environment Engineering, 2009, 36(2):28-36 (in Chinese). |
[36] | LIN M, QING X, KUMAR A, et al. SMART layer and SMART suitcase for structural health monitoring applications[C]//Proceedings of SPIE. Newport Beach:SPIE, 2001:98-106. |
[37] | MYLAVARAPU P, WOLDESENBET E. Non-destructive characterization of bondlines in composite adhesive joints[J]. Journal of Adhesion Science and Technology, 2006, 20(7):647-660. |
[38] | BRIAND J L. Experimental validation of a novel structural health monitoring strategy for bolted pipeline joints[D]. Halifax:Dalhousie University, 2010. |
[39] | 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12):3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3199-3212 (in Chinese). |
[40] | HEBDEN I, DIEHL S, MCFEAT J, et al. Applicability of a UK MASAAG guidance paper to F-35 SPHM evolution process[A]//The 10th International Workshop on Structural Health Monitoring. Stanford City:DEStech Publications, Inc, 2015:1-6. |
[41] | BOND R, UNDERWOOD S, ADAMS D E, et al. Structural health monitoring-based methodologies for managing uncertainty in aircraft structural life assessment[J]. Structural Health Monitoring, 2014, 13(6):621. |
[42] | QING X, SUN H, LU M. Integrated structural health monitoring system for civil aircraft structures[C]//The 10th International Workshop on Structural Health Monitoring. Stanford City:DEStech Publications, Inc, 2015:1-8 |
[43] | SPECKMANN H, DANIEL J P. Structural health monitoring for airliner, from research to user requirements, a European view[C]//Conference on Micro-Nano-Technologies. Reston:AIAA, 2004:6742. |
[44] | DUGNANI R, MALKIN M. Damage detection on a large composite sturcture[C]//Proceeding of the 4th International Workshop on Structural Health Monitoring. Stanford City:DEStech Publications, Inc, 2003:1-8. |
[45] | ECKSTEIN B, BEACH M, BONET M M. Analysis of loading effects on guided ultrasonic waves and damage assessment in a full-scale CFRP fuselage structure[C]//The 10th International Workshop on Structural Health Monitoring. Stanford City:DEStech Publications, Inc, 2015:19-25. |
[46] | XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints (part I:Experimental investigation)[J]. Composites Science and Technology, 2005, 65(7-8):1022-1031. |
[47] | XIAO Y, KAKUTA Y, ISHIKAWA T. A new concept for structural health monitoring of bolted composite joints[J]. Key Engineering Materials, 2007, 334:465-468. |
[48] | PARK G, SOHN H, FARRAR C R, et al. Overview of piezoelectric impedance-based health monitoring and path forward[J]. Shock and Vibration Digest, 2003, 35(6):451-464. |
[49] | GIURGIUTIU V, ZAGRAI A. Embedded self-sensing piezoelectric active sensors for on-line structural identification[J]. Journal of Vibration and Acoustics, 2002, 124(1):116-125. |
[50] | MASCARENAS D L, PARK G, FARINHOLT K M, et al. A low-power wireless sensing device for remote inspection of bolted joints[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2009, 223(5):565-575. |
[51] | RITDUMRONGKUL S, ABE M, FUJINO Y, et al. Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor[J]. Smart Materials and Structures, 2004, 13(1):20. |
[52] | LEE U. Dynamic characterization of the joints in a beam structure by using spectral element method[J]. Shock and Vibration, 2001, 8(6):357-366. |
[53] | DOYLE D T, ZAGRAI A, ARRITT B. Bolted joint integrity for structural health monitoring of responsive space satellites[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2009:2705 |
[54] | DOYLE D, ZAGRAI A, ARRITT B, et al. Damage detection in bolted space structures[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(3):251-264. |
[55] | CACCESE V, MEWER R, VEL S S. Detection of bolt load loss in hybrid composite/metal bolted connections[J]. Engineering Structures, 2004, 26(7):895-906. |
[56] | 卿新林, 王奕首, 高丽敏, 等. 多功能复合材料结构状态感知系统[J]. 实验力学, 2011, 26(5):611-616. QING X L, WANG Y S, GAO L M, et al. Multifunctional structural state sensing system for composite structures[J]. Journal of Experimental Mechanics, 2011, 26(5):611-616 (in Chinese). |
[57] | RAKOW A, CHANG F K. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints[J]. Structural Health Monitoring, 2012, 11(3):253-267. |
[58] | MCEVOY M A, CORRELL N. Materials that couple sensing, actuation, computation, and communication[J]. Science, 2015, 347(6228):1261689. |
[59] | KOSTSON E, FROMME P. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves[J]. Journal of Physics:Conference Series, 2009, 195(1):012003. |
[60] | MATT H, BARTOLI I, DI SCALEA F L. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures[J]. The Journal of the Acoustical Society of America, 2005, 118(4):2240-2252. |
[61] | GEETHA G K, RATHOD V T, MAHAPATRA D R, et al. Lamb wave based detection of damage in a stiffener bonded to a plate[C]//Proceedings of SPIE on NDE and Smart Materils. San Diego:SPIE, 2011:79842X-8. |
[62] | JANARDHAN P M, KRISHNAN B. Lamb-wave-based structural health monitoring technique for inaccessible regions in complex composite structures[J]. Structural Control and Health Monitoring, 2014, 21(5):817-832. |
[63] | GULIZZI V, RIZZO P, MILAZZO A. On the repeatability of the EMI technique for the monitoring of bonded joints[C]//Proceedings SPIE 9438, Health Monitoring of Structural and Biological Systems. San Diego:SPIE, 2015:943827-10. |
[64] | BAPTISTA F G, INMAN D J. Sizing PZT transducers in impedance-based structural health monitoring[J]. Sensors Journal, IEEE, 2011, 11(6):1405-1414. |
[65] | BAPTISTA F G. Optimal frequency range selection for PZT transducers in impedance-based SHM systems[J]. Sensors Journal, IEEE, 2010, 10(8):1297-1303. |
[66] | 高峰, 王德俊. 压电阻抗技术用于螺栓松紧健康诊断[J]. 中国机械工程, 2001, 12(9):1048-1049. GAO F, WANG D J. Piezoelectric impedance technology for bolt tightness health diagnosis[J]. China Mechanical Engineering, 2001, 12(9):1048-1049 (in Chinese). |
[67] | JALALPOUR M, KIM J J, TAHA M M R. Monitoring of L-shape bolted joint tightness using thermal contact resistance[J]. Experimental Mechanics, 2013, 53(9):1531-1543. |
[68] | SHIMAMURA Y, ODA K, TODOROKI A, et al. Application of electric resistance change method to damage detection of CFRP bolted joints[J]. Key Engineering Materials, 2005, 297:653-658. |
[69] | SHIMAMURA Y, ODA K, TODOROKI A, et al. Detectability of bearing failure of composite bolted joints by electric resistance change method[J]. Key Engineering Materials, 2006, 321:957-962. |
[70] | KIM C H, CHOI J H, KWEON J H. Defect detection in adhesive joints using the impedance method[J]. Composite Structures, 2015, 120(2):183-188. |
[71] | 吕志刚, 戚燕杰, 刘马宝, 等. 提高飞机结构安全性与经济性的新对策--ICMS技术对保证飞机结构安全与经济使用的重大作用[J]. 中国民用航空, 2009, 103(7):57-61. LV Z G, QI Y J, LIU M B, et al. New strategies for enhancing both safety and economics of aircraft structures-Important benefits of ICMS technology for ensuring structural safety and economical usage of aircraft[J]. China Civil Aviation, 2009, 103(7):57-61 (in Chinese). |
[72] | 陈群志, 刘健光, 余文波, 等. ICMS传感器防护技术研究[J]. 装备环境工程, 2010, 7(5):107-111. CHEN Q Z, LIU J G, YU W B, et al. Research on protection technology of ICMS sensor[J]. Equipment Environment Engineering, 2010, 7(5):107-111 (in Chinese). |
[73] | WISHAW M, BARTON D P. Comparative vacuum monitoring:a new method of in-situ real-time crack detection and monitoring[C]//Proceding of 10th Asia-Pacific Conference on Nondestructive Testing. Brisbane:Honesdom Internation(HK) ltd., 2001:1-9. |
[74] | THOPPUL S D, FINEGAN J, GIBSON R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures-A review[J]. Composites Science and Technology, 2009, 69(3-4):301-329. |
[75] | SUN H T, CHANG F K, QING X. The response of composite joints with bolt-clamping loads, Part I:Model development[J]. Journal of Composite Materials, 2002, 36(1):47-67. |
[76] | SUN H T, CHANG F K, QING X. The response of composite joints with bolt-clamping loads, part II:Model verification[J]. Journal of Composite Materials, 2002, 36(1):69-92. |
[77] | 卿新林, 王奕首, 赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学, 2012, 27(5):517-526. QING X L, WANG Y S, ZHAO L. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics, 2012, 27(5):517-526 (in Chinese). |
[78] | RAGHAVAN A, CESNIK C E S. Review of guided wave structural health monitoring[J]. The Shock and Vibration Digest, 2007, 39(2):91-114. |
[79] | LIGHT G M, RUESCHE E H, BLOOM E A, et al. Application of the cylindrically guided wave technique for bolt and pump shaft inspections[J]. Nuclear Engineering and Design, 1993, 144(3):465-468. |
[80] | PARK S H, YUN C B, ROH Y. PZT-induced Lamb waves and pattern recognitions for on-line health monitoring of jointed steel plates[C]//Smart Structures and Materials 2005:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. San Diego:SPIE, 2005:365. |
[81] | YANG J, CHANG F K. Detection of bolt loosening in C-C composite thermal protection panels:I. Diagnostic principle[J]. Smart Materials and Structures, 2006, 15(2):581. |
[82] | YANG J, CHANG F K. Detection of bolt loosening in C-C composite thermal protection panels:II. Experimental verification[J]. Smart Materials and Structures, 2006, 15(2):591. |
[83] | 王强, 袁慎芳, 邱雷. 基于时间反转理论的复合材料螺钉连接失效监测研究[J]. 宇航学报, 2008, 28(6):1719-1723. WANG Q, YUAN S F, QIU L. Study on bolt debonding monitoring of composite joint based on time-reversal method[J]. Journal of Astronautics, 2008, 28(6):1719-1723 (in Chinese). |
[84] | 袁慎芳, 邱雷, 王强, 等. 压电-光纤综合结构健康监测系统的研究及验证[J]. 航空学报, 2009, 30(2):348-356. YUAN S F, QIU L, WANG Q, et al. Application research of a hybrid piezoelectric-optic fiber integrated structural health monitoring system[J]. Acta Aeronautica & Astronautica Sinica, 2009, 30(2):348-356 (in Chinese). |
[85] | LIANG D, YUAN S F. Decision fusion system for bolted joint monitoring[J]. Shock and Vibration, 2015, 2015:1-11. |
[86] | 吴斌, 佟啸腾, 刘增华, 等. 基于机电阻抗技术的管道法兰结构健康监测实验研究[J]. 实验力学, 2010, 25(5):516-521. WU B, DONG X T, LIU Z H, et al. Experimental study of pipe flange structural health monitoring based on mechanical and electrical impedance[J]. Journal of Experimental Mechanics, 2010, 25(5):516-521 (in Chinese). |
[87] | LIM H J, KIM M K, SOHN H, et al. Impedance based damage detection under varying temperature and loading conditions[J]. NDT&E International, 2011, 44(3):740-750. |
[88] | NA S, TAWIE R, LEE H K. Electromechanical impedance method of fiber-reinforced plastic adhesive joints in corrosive environment using a reusable piezoelectric device[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(7):737-747. |
[89] | MALINOWSKI P H, WANDOWSKI T, OSTACHOWICZ W M. Characterisation of CFRP adhesive bonds by electromechanical impedance[C]//Proceedings SPIE 9064, Health Monitoring of Structural and Biological Systems. San Diego:SPIE, 2014:906415-7. |
[90] | GULIZZI V, RIZZO P, MILAZZO A. Electromechanical impedance method for the health monitoring of bonded joints:Numerical modeling and experimental validation[J]. Structural Durability and Health Monitoring, 2014, 10(1):19-54. |
[91] | WANG Y, GAO L, QIU L, et al. An adaptive filter based temperature compensation technique for structural health monitoring[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(17):2187-2198. |
[92] | BAPTISTA F G, BUDOYA D E, DE ALMEIDA V A D, et al. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring[J]. Sensors, 2014, 14(1):1208-1227. |
[93] | LOWE M J S, CAWLEY P. The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints[J]. Journal of Nondestructive Evaluation, 1994, 13(4):185-200. |
[94] | HAY T R, WEI L, ROSE J L, et al. Rapid inspection of composite skin-honeycomb core structures with ultrasonic guided waves[J]. Journal of Composite Materials, 2003, 37(10):929-939. |
[95] | QING X P, BEARD S J, KUMAR A, et al. A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure[J]. Smart Materials and Structures, 2006, 15(3):66. |
[96] | WANG D, YE L, TANG Y, et al. Monitoring of delamination onset and growth during Mode I and Mode II interlaminar fracture tests using guided waves[J]. Composites Science and Technology, 2012, 72(2):145-151. |
[97] | 刘国强, 肖迎春, 李明, 等. 复合材料胶接损伤的指数监测方法[J]. 航空学报, 2012, 33(7):1275-1230. LIU G Q, XIAO Y C, LI M, et al. An index method of monitoring composite debonding[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1275-1230 (in Chinese). |
[98] | KARPENKO O Y, HAQ M, KHOMENKO A, et al. Lamb wave based monitoring of delamination growth in mode Ⅰ and mode Ⅱ fracture tests[C]//Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics. Lombard:Springer, 2014:33-43. |
[99] | SAMARATUNG A D, JHA R, GOPALAKRISHNAN S. Wave propagation analysis in adhesively bonded composite joints using the wavelet spectral finite element method[J]. Composite Structures, 2015, 122(2):271-283. |
[100] | TERRIEN N, OSMONT D, ROYER D, et al. A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defects[J]. Ultrasonics, 2007, 46(1):74-88. |
[101] | GREVE D W, ZHENG P, OPPENHEIM I J. The transition from Lamb waves to longitudinal waves in plates[J]. Smart Materials and Structures, 2008, 17(3):035029. |
[102] | LINDGREN E, ALDRIN J C, JATA K, et al. Ultrasonic plate waves for fatigue crack detection in multi-layered metallic structures[C]//Proceeding of SPIE. San Diego:SPIE, 2007:653207-12. |
[103] | SUN F P, CHAUDHRY Z, LIANG C, et al. Truss structure integrity identification using PZT sensor-actuator[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(1):134-139. |
[104] | WANDOWSKI T, OPOKA S, MALINOWSKI P, et al. The performance of three electromechanical impedance damage indicators on structural element with bolted joints[C]//Proceedings of NDT in Aerospace Symposium. Bremen:Fraunhofer, 2015:1-10. |
[105] | ARGATOV I, SEVOSTIANOV I. Health monitoring of bolted joints via electrical conductivity measurements[J]. International Journal of Engineering Science, 2010, 48(10):874-887. |
[106] | BAUGHMAN R H, CUI C, ZAKHIDOV A A, et al. Carbon nanotube actuators[J]. Science, 1999, 284(5418):1340-4. |
[107] | THOSTENSON E T, CHOU TW. Carbon nanotube-based health monitoring of mechanically fastened composite joints[J]. Composite Science and Technology, 2008, 68(12):2557-2561. |
[108] | MACTABI R, ROSCA I D, HOA S V. Monitoring the integrity of adhesive joints during fatigue loading using carbon nanotubes[J]. Composites Science and Technology, 2013, 78(1):1-9. |
[109] | KANG M H, CHOI J H, KWEON J H. Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes[J]. Composite Structures, 2014, 108:417-422. |
[110] | ZAGRAI A, DOYLE A, GIGINEISHVILI V. Piezoelectric wafer active sensor structural health monitoring of space structures[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(9):921-940. |
[111] | ZHOU C, HONG M, SU Z, et al. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network[J]. Smart Materials and Structures, 2013, 22(1):015018. |
[112] | NI X, RIZZO P. Highly nonlinear solitary waves for the inspection of adhesive joints[J]. Experimental Mechanics, 2012, 52(9):1493-1501. |