|
- 2018
橡胶沥青性能测试技术的应用
|
Abstract:
本文通过调查研究国内外评价橡胶沥青的常规技术指标体系,室内采用8种不同基质沥青制备橡胶沥青,基于国内外规范中的针入度、锥入度、延度、软化点、弹性恢复、回弹恢复、Brookfield旋转黏度及剪切流变(DSR)试验等对橡胶沥青性能进行了评价,重点分析基质沥青四组分与各检测指标之间的相关性。研究表明:橡胶粉的溶胀作用不充分会导致针入度和延度的试验结果误差较大,针入度和延度指标评价橡胶沥青缺乏科学性;小锥小皿试验数据稳定性较强,能够有效评价橡胶沥青抗剪切流变性能;回弹恢复能够有效评价橡胶沥青在较小变形范围内的弹性恢复能力;橡胶沥青线弹性范围确定为20%~30%;基于DSR试验进行的应变扫描试验、温度扫描试验、频率扫描试验和滞回环试验等够显著区分橡胶粉与基质沥青的配伍性,由重复蠕变试验测得的零剪切黏度(ZSV)能够合理评价橡胶沥青高温性能;采用多变量回归分析和灰色关联分别评价基质沥青四组分与各项性能指标间的相关性,其中沥青质和饱和分关联程度较高; 60℃车辙因子与基质沥青四组分的相关系数达0.900,60℃复数弹性模量和ZSV与基质沥青四组分的相关系数高达0.9999和1.0。 Through investigating and studying the conventional technology index system of the rubber asphalt evaluation at home and abroad, the interior 8 different matrix asphalts were adopted to prepare rubber asphalts. Based on the domestic and foreign penetration, cone into the degree of specification, ductility, softening point, elastic recovery, rebound recovery, Brookfield revolving viscosity and dynamic shear rheological(DSR) test, the rubber asphalt performance was evaluated, focusing on analyzing the correlation between the matrix asphalt four components and the detection index. The study shows that the insufficiency of the rubber powder swelling effect can lead to a large error in the test results of the penetration degree and delay. The small cone test data is very stable and can effectively evaluate the shear rheological properties of rubber asphalt.Rebound recovery can effectively evaluate the elastic recovery ability of rubber asphalt in the lower deformation range. The elastic range of rubber asphalt is determined to be 20%-30%. Based on DSR tests such as strain scan test, temperature scanning test, frequency scanning test and hysteresis loop back test, the rubber powder and asphalt matrix compatibility can be significant enough to distinguish. The zero shear viscosity(ZSV) made by repeated creep test can reasonably evaluate the high temperature performance of rubber asphalt. Multivariate regression analysis and grey correlation were used to evaluate the correlation between the four components and the performance indexes of the matrix asphalt, with a high degree of asphalt and saturation. The correlation coefficient of 60℃ rut factor and the matrix asphalt four components is 0.900. The correlation coefficient of the 60℃ complex elasticity modulus and ZSV and matrix asphalt four components are 0.9999 and 1.0, respectively.
[1] | 张泽鹏, 王钊. 高温多雨地区橡胶沥青黏度技术指标的试验研究[J]. 公路交通科技, 2010, 27(6):34-39. ZHANG Z P, WANG Z. Experimental study of viscosity technical specification of rubber asphalt in high temperature and rainy regions[J]. Journal of Highway and Transportation Research and Development, 2010, 27(6):34-39(in Chinese). |
[2] | 曹卫东, 刘树堂, 房建果, 等. 硅烷偶联剂对橡胶沥青性能的影响[J]. 建筑材料学报, 2009, 12(4):497-500. CAO W D, LIU S T, FANG J G, et al. Effect of silane coupling agent on properties of asphalt-rubber(AR)binders[J]. Journal of Building Materials, 2009, 12(4):497-500(in Chinese). |
[3] | 白琦峰, 钱振东, 赵延庆. 基于流变学的沥青抗疲劳性能评价方法[J]. 北京工业大学学报, 2012, 38(10):1576-1542. BAI Q F, QIAN Z D, ZHAO Y Q. Asphalt fatigue resistance evaluation method based on the rheology[J]. Journal of Beijing University of Technology, 2012, 38(10):1576-1542(in Chinese). |
[4] | MAMLOUK M, MOBASHER B. Cracking resistance of asphalt rubber mix versus hot-mix asphalt[J]. Road Materials and Pavement Design, 2004, 5(4):435-451. |
[5] | 郭朝阳, 沈国辉, 王喜燕, 等. 基于CPXT法的橡胶力气路面噪音频谱分析[J]. 中国公路学报, 2012, 25(4):22-28. GUO C Y, CHEN G H, WANG X Y, et al. Analysis of asphalt-rubber pavement noise spectrum with close-proximity trailer method[J]. China Journal of Highway and Transport, 2012, 25(4):22-28(in Chinese). |
[6] | 李廷刚, 李金钟, 李伟. 橡胶沥青微观机制研究及其公路工程应用[J]. 公路交通科技, 2011, 28(1):25-30. LI T G, LI J Z, LI W. Micro-mechanism study and road engineering application of rubber asphalt[J]. Journal of Highway and Transportation Research and Development, 2011, 28(1):25-30(in Chinese). |
[7] | OLIVEIRA J R M, SILVA H M R D, ABREU L P F, et al. Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures[J]. Journal of Cleaner Production, 2013, 41:15-22. |
[8] | 郭利平, 张争奇, 张伟, 等. 基于高温和粘结性能的橡胶沥青胶浆性能研究[J]. 武汉理工大学学报, 2012, 1(34):46-51. GUO L P, ZHANG Z Q, ZHANG W, et al. Study on the mucilage performance of rubber asphalt based on high temperature properties and bond behavior[J]. Journal of Wuhan University of Technology, 2012, 1(34):46-51(in Chinese). |
[9] | 李晓燕, 平路, 汪海年, 等. 基于国内外试验方法的橡胶沥青性能测试[J]. 交通运输工程学报, 2015, 15(1):10-17. LI X Y, PING L, WANG H N, et al. Performance test of rubber asphalt based on domestic and abroad test methods[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1):10-17(in Chinese). |
[10] | 黄明, 汪翔, 黄卫东. 橡胶沥青混合料疲劳性能的自愈合影响因素分析[J]. 中国公路学报, 2013, 26(4):16-35. HUANG M, WANG X, HUANG W D. Analysis of influencing factors for self-healing of fatigue performance of asphalt rubber mixture[J]. China Journal of Highway and Transport, 2013, 26(4):16-35(in Chinese). |
[11] | 于新, 孙文浩, 罗怡琳, 等. 橡胶沥青温度敏感性评价方法研究[J]. 建筑材料学报, 2013, 16(2):266-283. YU X, SUN W H, LUO Y L, et al. Research on the evaluation index of temperature sensitivity of CRMA[J]. Journal of Building Materials, 2013, 16(2):266-283(in Chinese). |
[12] | NAVARRO F J, PARTAL P, MARTINEZ-BOZA F, et al. Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen[J]. Energy and Fuels, 2005, 19(5):1984-1990. |
[13] | 凌天清, 李耀楠, 董强, 等. 橡胶颗粒对微表处性能的影响及其降噪效果[J]. 交通运输工程学报, 2011, 11(5):1-5. LING T Q, LI Y N, DONG Q, et al. Influence of rubber particles on mico-surfacing performance and its noise-reduction effect[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5):1-5(in Chinese). |
[14] | 谭忆秋, 郭猛, 曹丽萍. 常用改性剂对沥青黏弹特性的影响[J]. 中国公路学报:2013, 26(4):7-15. TAN Y Q, GUO M, CAO L P. Effects of common modifiers on viscoelastic properties of asphalt[J]. China Journal of Highway and Transport, 2013, 26(4):7-15(in Chinese). |
[15] | 刘斌清, 胡松山, 谭华, 等. 沥青四组分与橡胶沥青性能指标的相关性分析[J]. 中外公路, 2015, 35(6):321-326. LIU B Q, HU S S, TAN H, et al. Asphalt and rubber asphalt four compounents performance index of correlation analysis[J]. Journal of China &Foreign Highway, 2015, 35(6):321-326(in Chinese). |
[16] | 中华人民共和国交通运输厅行业标准. 路用废轮胎硫化橡胶粉:JT/T 797-2011[S]. 北京:人民交通出版社, 2011. Standards of the Transport and Transportation Department of the People's Republic of China. Ground vulcanized rubber of scrap tires for highway engineering:JT/T 797-2011[S]. Beijing:People's Transportation Press, 2011(in Chinese). |
[17] | 何立平, 申爱琴, 谢成, 等. 橡胶沥青结合料性能正交试验[J]. 长安大学学报:自然科学版, 2014, 34(1):7-12. HE L P, SHENG A Q, XIE C, et al. Orthogonal test for rubber asphalt properties[J]. Journal of Chang'an University:Natural Science Edition, 2014, 34(1):7-12(in Chinese). |
[18] | 李晓燕, 平路, 汪海年, 等. 基于国内外试验方法的橡胶沥青性能测试[J]. 交通运输工程学报, 2015, 5(1):10-17. LI X Y, PING L, WANG H N, et al. Performance test of rubber asphalt based on domestic and abroad test methods[J]. Journal of Traffic and Transportation Engineering, 2015, 5(1):10-17(in Chinese). |
[19] | ZHOU H P, HOLIKATTI S, VACURA P. Caltrans use of scrap tires in asphalt rubber products:A comprehensive review[J]. Journal of Traffic and Transportation Engineering:English Edition, 2014, 1(1):39-48. |
[20] | WANG H N, YOU Z P, MILLS-BEALE J M, et al. Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber[J]. Construction and Building Materials, 2012, 26(1):583-590. |
[21] | BOCOUM A, HOSSEINNEZHAD S, FINI E H. Investigating effect of amine based additives on asphalt rubber rheological properties[C]//12th Proceedings of the International Conference on Asphalt Pavements. London:Taylor and Francis Group, 2014:921-931. |
[22] | 叶奋, 杨思远, 吴晓羽, 等. 深度降解橡胶改性沥青的流变性能[J]. 建筑材料学报, 2016, 5(19):945-949. YE F, YANG S Y, WU X Y. Rheological property of highly degraded rubber modified asphalt[J]. Journal of Building Materials, 2016, 5(19):945-949(in Chinese). |