全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

原位自生TiB2颗粒增强2024-T4铝基复合材料断裂行为数值模拟
Numerical simulation of fracture behavior of in-situ TiB2 particle reinforced 2024-T4 aluminum matrix composites

DOI: 10.13801/j.cnki.fhclxb.20170315.001

Keywords: 颗粒增强复合材料,颗粒偏聚,微裂纹,体胞
particle reinforced composites
,particle segregation,micro cracks,unit cells,ductile fracture

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  KLINGBEIL D, SVENDSEN B, REUSCH F. Gurson-based modelling of ductile damage and failure during cyclic loading processes at large deformation[J]. Engineering Fracture Mechanics, 2016, 160:95-123.
[2]  FISCHER F D, KOLEDNIK O, SHAN G X, et al. A note on calibration of ductile failure damage indicators[J]. International Journal of Fracture, 1995, 73(4):345-357.
[3]  H?NLE S, DONG M, MISHNAEVSKY J L, et al. FE-simulation of damage evolution and crack growth in two phase materials[C]//2nd European Mechanics of Materials Conference on Mechanics of Materials with Intrinsic Length Scale:Physics, Experiments, Modelling, and Applications. Magdeburg:1998:189-196.
[4]  GENG J, HONG T, MA Y, et al. The solution treatment of in-situ sub-micron TiB2/2024 Al composite[J]. Materials & Design, 2016, 98:186-193.
[5]  李庆, 杨晓翔. 周期性边界条件下炭黑增强橡胶基复合材料有效弹性性能数值模拟[J]. 福州大学学报(自然科学版), 2013, 41(1):97-103. LI Q, YANG X X. Numerical simulation for effective elastic behavior of carbon black filler particle reinforced rubber matrix composites based on periodic boundary conditions[J]. Journal of Fuzhou University (Natural Science Edition), 2013, 41(1):97-103(in Chinese).
[6]  BAO Y, WIERZBICKI T. A comparative study on various ductile crack formation criteria[J]. Journal of Engineering Materials and Technology, 2004, 126(3):314-324.
[7]  BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York:McGraw-Hill, 1952.
[8]  MUNRO R G. Material properties of titanium diboride[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(5):709-720.
[9]  SIMO J C, TAYLOR R L. A return mapping algorithm for plane stress elastoplasticity[J]. International Journal for Numerical Methods in Engineering, 1986, 22(3):649-670.
[10]  DOGHRI I. Mechanics of deformable solids:Linear, nonlinear, analytical and computational aspects[M]. New York:Springer Science & Business Media, 2013.
[11]  ABEDINI A, CHEN Z T. A micromechanical model of particle-reinforced metal matrix composites considering particle size and damage[J]. Computational Materials Science, 2014, 85:200-205.
[12]  IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrix composites:A review[J]. Journal of Materials Science, 1991, 26(5):1137-1156.
[13]  SOZHAMANNAN G G, PRABU S B, PASKARAMOORTHY R. Failures analysis of particle reinforced metal matrix composites by microstructure based models[J]. Materials & Design, 2010, 31(8):3785-3790.
[14]  王传薪, 刘东明, 王建刚, 等. B4C增强铝基复合材料力学性能有限元模拟[J]. 复合材料学报, 2016, 33(10):2253-2260. WANG C X, LIU D M, WANG J G, et al. Simulation of mechanical behaviors of B4C reinforced Al matrix composites by finite element[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2253-2260(in Chinese).
[15]  ABEDINI A, BUTCHER C, CHEN Z T. Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites[J]. Computational Materials Science, 2013, 73:15-23.
[16]  LASSANCE D, FABREGUE D, DELANNAY F, et al. Micromechanics of room and high temperature fracture in 6xxx Al alloys[J]. Progress in Materials Science, 2007, 52(1):62-129.
[17]  GRUBEN G, MORIN D, LANGSETH M, et al. Strain localization and ductile fracture in advanced high-strength steel sheets[J]. European Journal of Mechanics A:Solids, 2017, 61:315-329.
[18]  HU C, BAI J, GHOSH S. Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15(4):S377-S392.
[19]  MI G F, ZHAO D W, DONG C F, et al. Void damage evolution of LF6 aluminum alloy welded joints under external load and thermal cycling conditions[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10):1968-1973.
[20]  秦蜀懿, 王文龙, 张国定. 颗粒形状对SiCP/LD2复合材料塑性的影响[J]. 金属学报, 1998, 34(11):1193-1198. QIN S Y, WANG W L, ZHANG G D. The effect of particle shape on ductilities of SiCP/LD2 composites[J]. Acta Metallurgica Sinica, 1998, 34(11):1193-1198(in Chinese).
[21]  GURSON A L. Continuum theory of ductile rupture by void nucleation and growth Part I:Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15.
[22]  JIANG W, LI Y, SU J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics A:Solids, 2016, 57:132-148.
[23]  VADILLO G, REBOUL J, FERNáNDEZ-SáEZ J. A modified Gurson model to account for the influence of the Lode parameter at high triaxialities[J]. European Journal of Mechanics A:Solids, 2016, 56:31-44.
[24]  ROMANOVA V A, BALOKHONOV R R, SCHMAUDER S. The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite[J]. Acta Materialia, 2009, 57(1):97-107.
[25]  BABOUT L, BRECHET Y, MAIRE E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites[J]. Acta Materialia, 2004, 52(15):4517-4525.
[26]  崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6):3-6. CUI Y. Aerospace applications of silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering, 2002(6):3-6(in Chinese).
[27]  白芸, 韩恩厚, 谭若兵, 等. 铝基复合材料性能的研究现状[J]. 材料保护, 2003, 36(9):5-7. BAI Y, HAN E H, TAN R B, et al. Rsearch on properties of aluminum matrix composites[J]. Materials Properties, 2003, 36(9):5-7(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133