|
- 2018
原位自生TiB2颗粒增强2024-T4铝基复合材料断裂行为数值模拟
|
Abstract:
[1] | KLINGBEIL D, SVENDSEN B, REUSCH F. Gurson-based modelling of ductile damage and failure during cyclic loading processes at large deformation[J]. Engineering Fracture Mechanics, 2016, 160:95-123. |
[2] | FISCHER F D, KOLEDNIK O, SHAN G X, et al. A note on calibration of ductile failure damage indicators[J]. International Journal of Fracture, 1995, 73(4):345-357. |
[3] | H?NLE S, DONG M, MISHNAEVSKY J L, et al. FE-simulation of damage evolution and crack growth in two phase materials[C]//2nd European Mechanics of Materials Conference on Mechanics of Materials with Intrinsic Length Scale:Physics, Experiments, Modelling, and Applications. Magdeburg:1998:189-196. |
[4] | GENG J, HONG T, MA Y, et al. The solution treatment of in-situ sub-micron TiB2/2024 Al composite[J]. Materials & Design, 2016, 98:186-193. |
[5] | 李庆, 杨晓翔. 周期性边界条件下炭黑增强橡胶基复合材料有效弹性性能数值模拟[J]. 福州大学学报(自然科学版), 2013, 41(1):97-103. LI Q, YANG X X. Numerical simulation for effective elastic behavior of carbon black filler particle reinforced rubber matrix composites based on periodic boundary conditions[J]. Journal of Fuzhou University (Natural Science Edition), 2013, 41(1):97-103(in Chinese). |
[6] | BAO Y, WIERZBICKI T. A comparative study on various ductile crack formation criteria[J]. Journal of Engineering Materials and Technology, 2004, 126(3):314-324. |
[7] | BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York:McGraw-Hill, 1952. |
[8] | MUNRO R G. Material properties of titanium diboride[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(5):709-720. |
[9] | SIMO J C, TAYLOR R L. A return mapping algorithm for plane stress elastoplasticity[J]. International Journal for Numerical Methods in Engineering, 1986, 22(3):649-670. |
[10] | DOGHRI I. Mechanics of deformable solids:Linear, nonlinear, analytical and computational aspects[M]. New York:Springer Science & Business Media, 2013. |
[11] | ABEDINI A, CHEN Z T. A micromechanical model of particle-reinforced metal matrix composites considering particle size and damage[J]. Computational Materials Science, 2014, 85:200-205. |
[12] | IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrix composites:A review[J]. Journal of Materials Science, 1991, 26(5):1137-1156. |
[13] | SOZHAMANNAN G G, PRABU S B, PASKARAMOORTHY R. Failures analysis of particle reinforced metal matrix composites by microstructure based models[J]. Materials & Design, 2010, 31(8):3785-3790. |
[14] | 王传薪, 刘东明, 王建刚, 等. B4C增强铝基复合材料力学性能有限元模拟[J]. 复合材料学报, 2016, 33(10):2253-2260. WANG C X, LIU D M, WANG J G, et al. Simulation of mechanical behaviors of B4C reinforced Al matrix composites by finite element[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2253-2260(in Chinese). |
[15] | ABEDINI A, BUTCHER C, CHEN Z T. Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites[J]. Computational Materials Science, 2013, 73:15-23. |
[16] | LASSANCE D, FABREGUE D, DELANNAY F, et al. Micromechanics of room and high temperature fracture in 6xxx Al alloys[J]. Progress in Materials Science, 2007, 52(1):62-129. |
[17] | GRUBEN G, MORIN D, LANGSETH M, et al. Strain localization and ductile fracture in advanced high-strength steel sheets[J]. European Journal of Mechanics A:Solids, 2017, 61:315-329. |
[18] | HU C, BAI J, GHOSH S. Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15(4):S377-S392. |
[19] | MI G F, ZHAO D W, DONG C F, et al. Void damage evolution of LF6 aluminum alloy welded joints under external load and thermal cycling conditions[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10):1968-1973. |
[20] | 秦蜀懿, 王文龙, 张国定. 颗粒形状对SiCP/LD2复合材料塑性的影响[J]. 金属学报, 1998, 34(11):1193-1198. QIN S Y, WANG W L, ZHANG G D. The effect of particle shape on ductilities of SiCP/LD2 composites[J]. Acta Metallurgica Sinica, 1998, 34(11):1193-1198(in Chinese). |
[21] | GURSON A L. Continuum theory of ductile rupture by void nucleation and growth Part I:Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15. |
[22] | JIANG W, LI Y, SU J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics A:Solids, 2016, 57:132-148. |
[23] | VADILLO G, REBOUL J, FERNáNDEZ-SáEZ J. A modified Gurson model to account for the influence of the Lode parameter at high triaxialities[J]. European Journal of Mechanics A:Solids, 2016, 56:31-44. |
[24] | ROMANOVA V A, BALOKHONOV R R, SCHMAUDER S. The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite[J]. Acta Materialia, 2009, 57(1):97-107. |
[25] | BABOUT L, BRECHET Y, MAIRE E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites[J]. Acta Materialia, 2004, 52(15):4517-4525. |
[26] | 崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6):3-6. CUI Y. Aerospace applications of silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering, 2002(6):3-6(in Chinese). |
[27] | 白芸, 韩恩厚, 谭若兵, 等. 铝基复合材料性能的研究现状[J]. 材料保护, 2003, 36(9):5-7. BAI Y, HAN E H, TAN R B, et al. Rsearch on properties of aluminum matrix composites[J]. Materials Properties, 2003, 36(9):5-7(in Chinese). |