|
- 2018
电化学制备石墨烯/纳米TiO2复合材料及光催化性能
|
Abstract:
[1] | 黄冬根, 莫壮洪, 全水清, 等. 石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J]. 复合材料学报, 2016, 33(1):155-162. HUANG D G, MO Z H, QUAN S Q, et al. Preparation and photocatalytic reduction performance of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2016, 33(1):155-162(in Chinese). |
[2] | SU C Y, LU A Y, XU Y, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. Acs Nano, 2011, 5(3):2332-2339. |
[3] | KOTOV N A, DEKANY I, FENDLER J H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly:Transition between conductive and non-conductive states[J]. Advanced Materials, 1996, 8(8):637-641. |
[4] | GUO H L, WANG X F, QIAN Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9):2653-2659. |
[5] | YANG S, LIN Y, SONG X, et al. Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces, 2015, 7(32):17884-17892. |
[6] | WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7):1487-1491. |
[7] | ANANDAN S, RAO T N, SATHISH M, et al. Super-hydrophilic graphene-loaded TiO2 thin film for self-cleaning applications[J]. ACS Applied Materials & Interfaces, 2013, 5(1):207-212. |
[8] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. |
[9] | HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339. |
[10] | EDA G, FANCHINI G, CHHOWALLA M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5):270-274. |
[11] | LI D, MVLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):101-105. |
[12] | 陈影声, 陈震, 陈日耀, 等. NiO-TiO2同轴纳米纤维的制备及光催化[J]. 复合材料学报, 2011, 28(2):36-41. CHEN Y S, CHEN Z, CHEN R Y, et al. Preparation and photocatalytic properties of NiO-TiO2 coaxial nanofibers[J]. Acta Materiae Compositae Sinica, 2011, 28(2):36-41(in Chinese). |
[13] | 于江伟, 朱丽英, 杨小平, 等. 碳纤维负载钐掺杂纳米TiO2复合材料的制备与表征[J]. 复合材料学报, 2010, 27(6):21-25. YU J W, ZHU L Y, YANG X P, et al. Preparation and characterization of nanocomposite composed of Sm-doped TiO2 nanoparticles loaded onto carbon nanofibers[J]. Acta Materiae Compositae Sinica, 2010, 27(6):21-25(in Chinese). |
[14] | 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2):255-262. ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation and photocatalytic activity of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):255-262(in Chinese). |
[15] | ZHAO C X, XU W. Plasmon-induced optical conductivity of graphene driven by an electric field[J]. Rare Metal Materials & Engineering, 2015, 44(11):2698-2701. |
[16] | WANG J, MANGA K K, BAO Q, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. Journal of the American Chemical Society, 2011, 133(23):8888-8891. |
[17] | YANG D, VELAMAKANNI A, BOZOKLU G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009, 47(1):145-152. |
[18] | SARAVANAN G, MOHAN S. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties[J]. Applied Surface Science, 2016, 386:96-102. |
[19] | VINCENT C T, MATTHEW J A, YANG Y, et al. High-through put solutions processing of large-scale graphene[J]. Material Nanotechnology, 2009, 4(1):25-29. |
[20] | QIANQIAN Z, TANG B, GUOXIN H. High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts:Preparation and characterization[J]. Journal of Hazardous Materials, 2011, 198(2):78-86. |
[21] | YANG S, SONG X, ZHANG P, et al. Self-assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors[J]. Small, 2014, 10(11):2270-2279. |